Связанные понятия
Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной...
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), предложенная Альбертом Эйнштейном в 1915—1916 годах.
Специа́льная тео́рия относи́тельности (СТО; также называемая ча́стная тео́рия относи́тельности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей). Фактически СТО описывает геометрию четырёхмерного пространства-времени и базируется на плоском...
Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.
Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «ньютоновой механикой».
Упоминания в литературе
Общая
теория относительности была опубликована в 1916 г. Она распространила принципы специальной теории относительности на неинерциальные (ускоренные) системы. Эйнштейн указал, что все системы отсчета, инерциальные и неинерциальные, равноценны для описания движения материальных объектов, и определил отличия между системами: инерциальная система движется равномерно и прямолинейно, неинерциальная система движется с ускорением. В рамках общей теории относительности он разработал полевую теорию тяготения, предположив существование гравитационного поля и особых частиц гравитации, которые назвал гравитонами.
Современная физика предлагает некоторые удивительные возможности объяснения, основанные на более широком понимании природы времени. Эйнштейновская
теория относительности , заменившая трехмерное пространство и линейное время концепцией четырехмерного континуума пространства-времени, дает интересную возможность для понимания некоторых трансперсональных переживаний, касающихся других исторических периодов. Специальная теория относительности при определенных обстоятельствах допускает обратный ход времени. В современной физике все более привычным становится рассматривать время как двунаправленную – вперед и назад – сущность. Так, например, в физике высоких энергий при интерпретации пространственно-временных диаграмм (диаграмм Фейнмана) движение частиц во времени вперед равносильно движению соответствующих античастиц в обратном направлении. В размышлениях, представленных в работе «Геометродинамика», Джон Уилер устанавливает в физическом мире параллели тому, что происходит эмпирически при некоторых необычных состояниях сознания (Wheeler, 1962). Понятие Уилера о гиперпространстве теоретически допускает моментальные связи между элементами пространства без эйнштейновского ограничения скоростью света. Экстраординарные изменения пространства-времени, материи и причинности, постулируемые теорией относительности в связи со сжатием звезд и черными дырами, также имеют свои параллели с переживаниями в необычных состояниях сознания.
В физике существует две теории, значительно более глубокие, чем остальные. Первая – это общая
теория относительности , которая, как я уже говорил, является нашей лучшей теорией пространства, времени и гравитации. Вторая – еще более глубокая – это квантовая теория. Эти две теории (но никакая из существующих или ожидаемых теорий субатомных частиц) создают подробную объяснительную и формальную концептуальную основу, в рамках которой выражаются все остальные теории современной физики, и содержат основные физические принципы, которым подчиняются все прочие теории. Объединение общей теории относительности и квантовой теории – с целью получения квантовой теории гравитации – было на протяжении нескольких десятилетий основным предметом поисков физиков-теоретиков. Оно должно было стать частью любой теории всего, как в узком, так и в широком смысле этого термина. Как мы увидим в следующей главе, квантовая теория, как и теория относительности, дает революционно новый способ объяснения физической реальности. Причина, по которой квантовая теория глубже теории относительности, лежит большей частью не в физике, а вне ее, поскольку ее следствия простираются далеко за пределы физики и даже за пределы самой науки в привычном ее понимании. Квантовая теория является одной из четырех основных нитей, образующих наше современное понимание структуры реальности.
В пользу этого предположения говорит прежде всего то, что сравниваются задачи в принципиально разной постановке: вместо классической задачи двух тел Эйнштейн ставит системную задачу взаимодействия элемента (тела) и системы (поля). В постановке Эйнштейна задача тяготения оказывается самосогласованной; ее можно описать следующей словесной «формулой»: пространство – время искривляется, указывая телам, как им двигаться, а тела указывают пространству и времени, как изогнуться. По своей сути такая постановка задачи характерна для теории систем, где взаимодействие элементов и объемлющей их системы полностью укладывается в рамки формулы самосогласованного взаимодействия, приведенной выше. Для сравнения приведем аналогичную формулировку в биологическом варианте системного подхода: организм (система) обеспечивает связность частей (органов или элементов), в свою очередь своей работой отдельные органы обеспечивают гомеостазис организма, поддерживая тем самым связанность воедино всех его частей. Сегодня уже достаточно понятно, что
теория относительности являлась системной теорией изначально, так как проводила совместное рассмотрение системы (отсчета) и вида законов (природы), которые в этой системе действуют. В то же время теория систем и теория относительности не «слились в экстазе». Работы Эйнштейна в Швейцарии и Богданова в России появились практически одновременно, однако теория систем оформилась почти на 50 лет позже, в работах Берталанфи. При этом ни в «Тектологии» Богданова, ни в теории систем Рапопорта и Берталанфи не содержится математического аппарата, который бы позволил перекинуть мостик взаимопонимания между этими теориями.
Но если 30–40 лет тому назад можно было говорить, что физика (и механика) поверглись в состояние анархии, то сейчас это уже не соответствует действительности. Революционная ломка основных физических принципов и представлений привела к созданию новых концепций, более глубоких и более точных, чем прежние. Причем эти концепции не просто отвергают старую классическую механику, но рассматривают ее как приближенную теорию, имеющую свои вполне определенные границы применимости. Так, например, оказалось, что в мире мельчайших известных нам объектов – молекул, атомов, электронов и т. д., классическая механика перестает быть справедливой и должна уступить место более точной, хотя в то же время более сложной и более отвлеченной теории – квантовой механике. При этом квантовая механика не есть нечто совершенно противоречащее классической механике: она включает в себя последнюю как некоторое приближение, пригодное при рассмотрении объектов с достаточно большой массой. С другой стороны, для процессов, характеризующихся большими скоростями движения, приближающихся к скорости света, классическая механика тоже перестает быть справедливой и должна быть заменена более строгой теорией – релятивистской механикой, базирующейся на
теории относительности Эйнштейна.
Связанные понятия (продолжение)
Тео́рия всего ́ — гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия. Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризациях квантовой физики для обозначения теории, которая объединила бы все четыре фундаментальных взаимодействий в природе. В современной научной литературе вместо термина «теория всего» как правило используется термин...
Ква́нтовая гравита́ция — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха, — объединение таким образом гравитации с остальными тремя фундаментальными взаимодействиями, то есть построение так называемой «теории всего»).
Тео́рия струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.
Статисти́ческая фи́зика — это раздел теоретической физики, посвященный изучению систем с произвольным (часто — бесконечным или несчетным) числом степеней свободы. Изучаемые системы могут быть как классическими, так и квантовыми.
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие...
Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.
Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля.
Атомная физика — раздел физики, изучающий строение и свойства атомов. Атомная физика возникла в конце XIX — начале XX века в результате экспериментов, установивших, что атом представляет собой систему из положительно заряженного ядра и отрицательно заряженных электронов, и получила своё развитие в связи с созданием квантовой механики, объяснившей структуру атома. Строение атомного ядра изучается в ядерной физике.
Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается...
При́нцип относи́тельности (принцип относительности Эйнштейна) — фундаментальный физический принцип, один из принципов симметрии, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.
Статистическая механика — раздел статистической физики, изучающий методами теории вероятностей поведение систем (произвольного) конечного числа частиц. Число частиц является произвольным конечным натуральным числом. Впервые классическую статистическую механику одной частицы рассмотрел Макс Борн в 1955 году.
Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также фи́зикой высо́ких эне́ргий или субъядерной физикой — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия.
Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля.
Супергравита́ция (от супер… и лат. gravitas — тяжесть) — обобщение общей теории относительности (ОТО) на основе суперсимметрии; или часто: многомерная супергравитация — название физических теорий, включающих дополнительные измерения, суперсимметрию и гравитацию.
Космоло́гия (космос + логос) — раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика и астрономия.
Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью.
Перенормиро́вка в квантовой теории поля — процедура устранения ультрафиолетовых расходимостей в классе теорий, называемых перенормируемыми. С физической точки зрения соответствует изменению начальных (затравочных) лагранжианов таких теорий с тем, чтобы результирующая динамика теории не содержала сингулярностей (и совпадала с наблюдаемой, если теория претендует на описание действительности). Другими словами, перенормировка — это уточнение лагранжиана взаимодействия с той целью, чтобы он не приводил...
Релятивистская механика — раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) механику.
Суперсимме́трия или симме́трия Фе́рми — Бо́зе — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.
Копенга́генская интерпрета́ция — интерпретация (толкование) квантовой механики, которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года. Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции, данную М. Борном, и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.
Принцип дополнительности — один из важнейших методологических и эвристических принципов науки, а также один из важнейших принципов квантовой механики, сформулированный в 1927 году Нильсом Бором. Согласно этому принципу, для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых даёт исчерпывающую информацию об этих явлениях как о целостных. Например, дополнительными в квантовой механике являются...
При́нцип наиме́ньшего де́йствия Га́мильтона (также просто принцип Гамильтона), точнее при́нцип стациона́рности де́йствия — способ получения уравнений движения физической системы при помощи поиска стационарного (часто — экстремального, обычно, в связи со сложившейся традицией определения знака действия, наименьшего) значения специального функционала — действия. Назван в честь Уильяма Гамильтона, использовавшего этот принцип для построения так называемого гамильтонова формализма в классической механике...
Симме́три́я в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого).
Простра́нство-вре́мя (простра́нственно-временно́й конти́нуум) — физическая модель, дополняющая пространство равноправным временны́м измерением и таким образом создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. Пространство-время непрерывно и с математической точки зрения представляет собой многообразие с лоренцевой метрикой.
Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.
Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Являются наиболее общими законами в любой физической теории. Имеют большое эвристическое значение.
При́нцип соотве́тствия в методологии науки — утверждение, что любая новая научная теория должна включать старую теорию и ее результаты как частный случай. Например, закон Бойля — Мариотта является частным случаем уравнения состояния идеального газа в приближении постоянной температуры; кислоты и основания Аррениуса являются частным случаем кислот и оснований Льюиса и т. п.
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части.
По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной (называемой полевой переменной), определённой...
История физики исследует эволюцию физики — науки, изучающей фундаментальные (наиболее общие) свойства и законы движения объектов материального мира. Предметом истории физики являются выявление и обобщённый анализ основных событий и тенденций в развитии физических знаний.
Молекулярная теория (сокращённо МТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений...
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации...
Асимптоти́ческая свобо́да — физический эффект, возникающий в некоторой калибровочной теории, в которой взаимодействие между частицами, такими как кварки, становится сколь угодно малым при уменьшении расстояния между частицами. Другими словами, в асимптотическом пределе r→0 частицы перестают взаимодействовать и становятся свободными.
Петлевая квантовая гравитация — одна из теорий квантовой гравитации, основанная на концепции дискретного пространства-времени и предположении об одномерности физических возбуждений пространства-времени на планковских масштабах. Делает возможной космологическую гипотезу пульсирующей Вселенной.
Многомирова́я интерпрета́ция (англ. many-worlds interpretation) или интерпретация Эверетта — интерпретация квантовой механики, которая предполагает существование, в некотором смысле, «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые постоянные, но которые находятся в различных состояниях. Исходная формулировка принадлежит Хью Эверетту (1957 год).
Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась лоренц-ковариантность.
Мы́сленный экспериме́нт в физике, философии и некоторых других областях знания — вид познавательной деятельности, в которой ключевая для той или иной научной теории ситуация разыгрывается не в реальном эксперименте, а в воображении. Мысленный эксперимент в физике зачастую напоминает доказательство теоремы методом от противного в математике, когда некоторое положение физической модели или схемы сначала отвергается, а затем путём преобразования модели мы приходим к противоречию с тем или иным принципом...
Дина́мика (греч. δύναμις «сила, мощь») — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, момент импульса, энергия.
Теорети́ческая фи́зика — раздел физики, в котором в качестве основного способа познания природы используется создание теоретических (в первую очередь математических) моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является самостоятельным методом изучения природы, хотя её содержание, естественно, формируется с учётом результатов экспериментов и наблюдений за природой.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения...
Упоминания в литературе (продолжение)
Спор о геометрии пространства – чисто схоластический спор. Для того, чтобы понять, как возникла общая
теория относительности , нужно немного истории. В классической физике невозможно определить абсолютную скорость какого-либо тела. Нет базы, нет абсолютно неподвижной системы координат, относительно которой можно было бы определить абсолютную скорость тела. Поэтому в классической физике все скорости относительны. В доклассической физике такая база была. Во-первых, длительное время считалось, что Земля неподвижна. Во-вторых, считалось, что все пространство Вселенной заполнено особой средой-эфиром. В доклассической физике родилась волновая теория света, которая оказалась несовместимой с классической физикой. Поэтому стояла альтернатива – пустота или эфир. Третьего не дано. Если пустота – то корпускулярная теория, если эфир – то волновая теория. В 1818 году с подачи Френеля Парижская АН восстановила отвергнутую классической физикой волновую теорию света. Но раз волновая теория, то, значит, есть в пространстве эфир. Появился соблазн определить скорость Земли относительно эфира. Сто лет назад американский физик Альберт Майкельсон проделал свой знаменитый эксперимент по определению скорости Земли относительно эфира. Эксперимент, как принято считать, дал отрицательный результат: «…отсюда следовало, что либо Земля неподвижна, либо эфира просто не существует, но в любом случае в представлениях о природе крылась какая-то фундаментальная ошибка». («Наука и жизнь», № 4, 1987, с. 50).
Элементы научного знания, как правило, характеризуются длительным жизненным циклом. Чаще наблюдается модификация парадигм, концепций, идей и моделей действительности, чем их полное опровержение и изъятие. Так,
теория относительности не вытеснила из науки законы движения, открытые И. Ньютоном, а лишь ограничила область их применения, но они до настоящего времени используются при расчете траекторий движения планет, космических кораблей и спутников. А, к примеру, античные представления об атомах как элементарных частях материи сохранялись на протяжении многих столетий и получили свое дальнейшее научное развитие и глубокое изучение лишь в XX в. Процесс познания в целом имеет накопительный характер: можно сказать, что сохранение является атрибутом как окружающего мира, так и самого процесса познания[46].
Время в неклассической науке. Этап неклассической науки, начавшийся с изучения
теории относительности (А. Эйнштейн, А. Пуанкаре, Г. Лоренц и др.), задал новый подход к пониманию времени. Так, специальная теория относительности утверждает, что время не является одинаковым в разных ИСО – инерциальных системах отсчета (это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно). Так, свет будет проходить между двумя точками одной ИСО за одно время, а в другой ИСО за то же самое время – другое расстояние. Время движущихся объектов течет медленнее (релятивистское замедление времени), эффект замедления времени обусловлен только скоростью объекта. Известный парадокс рассматривает историю двух близнецов – один из них отправляется в космический полет, его время течет медленнее, и, когда он вернется на Землю, его часы будут отставать. В продолжение парадокса, можно сказать, что и сам брат-путешественник будет моложе, чем его «земной» близнец. Оказывается, что для решения вопроса о возникновении и необратимости времени необходимо ввести позицию наблюдателя (об этом пишет Фон Нейман). Внутреннее время, очевидно, возникает в сложных (открытых, удаленных от состояния равновесия) системах. И. Пригожин пишет: «… мы рассматриваем себя как высокоразвитую разновидность диссипативных структур и «объективно» обосновываем различие между прошлым и будущим, введенное в самом начале». Человек и природа не существуют во времени, а обладают временными свойствами.
Оригинальный математический аппарат неевклидовой геометрии позволил Эйнштейну далеко продвинуться в понимании сущности всемирного тяготения. Именно таким образом великий теоретик пришел к парадоксальной идее, составившей основу второй части релятивистской концепции: связать силу тяготения с кривизной нашего пространства. Надо заметить, что основные уравнения общей
теории относительности впервые вывел Давид Гильберт. Правда, он пришел к сущности своих знаменитых уравнений, составивших «пространство Гильберта» своим собственным путем в результате исследований, которые повлияли на современную математику не меньше, чем идеи теории относительности на физику. Любопытно и другое: Гильберт и Эйнштейн посвятили свою жизнь поискам наиболее общих принципов организации мироздания. Причем, если Гильберт искал единые основы мира математических идей, то жизненным идеалом Эйнштейна было создание теории некоего единого поля. Из этой «теории всего» можно было бы как частный случай вывести существование всех известных частиц и сил. Эта «чаша Грааля» современной физики до сих пор остается недостижимой, но ее поиски ведутся весьма интенсивно, причем как физиками-теоретиками, так и экспериментаторами.
Оказывается, физики сами затрудняются ответить на такие «простые» вопросы, как «Что такое движение, скорость и время?». Для подтверждения приведу краткий анализ исследования восприятия времени и скорости, которое было проведено Ж. Пиаже по просьбе А. Эйнштейна. Очень знаменательна аргументация этой просьбы: «во-первых, в силу того, что в физике связь этих понятий образует порочный круг (скорость определяется временем и пространством, а время измеряется только при помощи скорости), и, во-вторых, в силу того, что в классической механике время является более непосредственным и элементарным понятием, чем скорость, тогда как в
теории относительности время зависит от скорости» (Пиаже, 1966, с. 10).
Потеряв в специальной
теории относительности свою «независимость» от движущихся тел и друг от друга, пространство и время как бы «нашли» друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 г. работу «Основания теории электромагнитных процессов», в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику. С этой новой позиции А. Эйнштейн рассмотрел закон тяготения И. Ньютона. Вместо силы тяготения он стал оперировать полем тяготения. Поля тяготения были включены в пространственно-временной континуум как его «искривление». Метрика континуума стала неевклидовой, «римановской» метрикой. «Кривизна» континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света, проходящего вблизи Солнца.
Хотя мы и не хотим обсуждать этот очень общий момент сейчас, мы хотели бы уже сейчас подчеркнуть, что существует черта, отстаиваемая многими как подлинный признак объективности, непосредственно напоминающая прежние признаки всеобщности и необходимости: инвариантность. Среди ученых, настаивающих на этом принципе, особенно заметен Макс Борн[75]. Согласно этой точке зрения, главная черта нашего контакта с объектами нашего опыта – то, что мы можем описывать их по-разному, в зависимости от той системы координат, которую мы выбираем для фиксации наших наблюдений. Все эти описания действительно отличаются друг от друга, но оказывается, что эти различные «проекции» одного и того же объекта могут подчиняться определенным правилам преобразования, образующим группы в математическом смысле слова, причем эти группы допускают инварианты. И хотя было бы неразумно претендовать на то, что все эти проекции объективны (поскольку они различны), представляется вполне разумным свести объективность к этому ядру инвариантов, сохраняющихся при разных точках зрения. Можно заметить, что это понимание объективности, по крайней мере неявно, принимается, в некотором смысле, в
теории относительности . Верно, что эта теория не допускает никакого «привилегированного наблюдателя», и нет никаких физических измерений, которые могли бы считаться независимыми от системы координат, к которой они относятся. Но, с другой стороны, эта «относительность» вовсе не представляет «конечную стадию» физического исследования, но скорее исходный пункт, который должен быть в некотором смысле превзойден. На самом деле задача теории относительности – найти формулировку основных законов физики, инвариантной относительно всех систем отсчета, в которых измеряются величины.
Значение математических методов в теории организации стало особенно наглядным в последние годы, когда были обнаружены удивительные свойства «универсальности» систем различной природы, испытавших многократные бифуркации. Изученные сначала на относительно простых явлениях, таких, например, как отображение отрезка в себя, они, как оказалось, свойственны и процессам неизмеримо более сложной природы9. Конечно, бессмысленно говорить об организации, не называя ее материального носителя. Но ведь похожая ситуация возникла и после открытия общей
теории относительности . Теперь трудно оспаривать, что пространство вне времени, вне связи с распределением вещества и изучения и характером их движения есть некая фикция, некая абстракция. Но это вовсе не означает, что нельзя изучать свойства и особенности того же пространства, той же организации самих по себе. Изучение таких абстракций чрезвычайно важно для науки и составляет основу целого ряда теоретических дисциплин (и не только теоретических!). Теоретическая наука в отличие от эмпирии всегда имеет дело с идеализациями реальных объектов. И не только наука. Ведь изучаем же мы законы архитектуры, не вдаваясь особенно в изучение физических свойств тех материалов, из которых построены те или другие шедевры зодчества, и изучаем их архитектурные формы, мало беспокоясь о том, как используются здания.
В 1905 году Эйнштейн завершил специальную
теорию относительности , показав, что расстояния, скорости и промежутки времени относительны и зависят от наблюдателя, и установив, что ничто не может перемещаться быстрее скорости света. Следствием из этой теории стало самое знаменитое в мире уравнение: E = mc2. В 1915 году Эйнштейн представил общую теорию относительности, которая переопределяла сущность гравитации в рамках ошеломительно новой идеи: искривления пространства и времени.
Так, законы классической механики, открытые и сформулированные И. Ньютоном, проявляются только в макромире и при скоростях, намного меньших, чем скорость света. Как только мы будем изучать движение при скоростях, соизмеримых со скоростью света, то нам придется использовать преобразования Лоренца, закрепленные в
теории относительности , сформулированной А. Эйнштейном.
Ее решение показывает, что звезды, излучая волны, теряют кинетическую и потенциальную энергию и постепенно падают друг на друга. Это явление действительно наблюдается в двойных звездных системах и находится в количественном согласии с предсказаниями общей
теории относительности . В частности, оно согласуется с предположением наличия гравитационных волн.
Такие физические величины, как протяженность, время и масса, в
теории относительности утратили свой статус абсолютности. Эйнштейн в качестве величины, которая имеет статус постоянной, оставил лишь силу (например, сила тяготения). Общая теория относительности содержит геометрическое толкование явления тяготения.
Атомы звездных систем, находящиеся в разной галактике независимы друг от друга, но зависимы от вселенной. Точно так же энергии двух звездных систем могут не взаимодействовать друг с другом, находясь в разных галактиках, но подчиняются влиянию энергии вселенной.
Теория относительности Эйнштейна применима к этим моделям и может быть дополнена тем, что абсолютных величин не бывает по-определению. Динамика, которая является основой материи, не может быть абсолютной величиной и может рассматриваться более менее пристойно только в условиях той эволюционной эпохи, которая является объектом исследования и наблюдения.
Время (от индоевропейск. vertmen – вертеть, вращать). В XX в. под влиянием общей
теории относительности В. понимается как четвертое измерение, главное отличие которого от первых трех (пространства), заключается в том, что В. необратимо (анизотропно). Вот как формулирует это исследователь философии В. XX в. Ганс Рейхенбах:
Важно, что КМ даёт взаимодополняющее описание любого объекта и как локализованного в пространстве-времени, и как никаким образом не локализованного. Поэтому представления о запутанных состояниях и декогеренции соотносятся с понятиями не частиц, а систем и подсистем, содержащих любое число частиц. Соответственно, нелокальные связи возникают между любыми взаимодействующими объектами, а не только между квантовыми объектами. Если исходить, следуя Бому, из того, что запутанные состояния представляют собой не отдельные локальные объекты, а проекцию более сверхглубокого и фундаментального уровня целостной реальности, то именно этот нелокальный аспект квантового потенциала позволяет объяснить эффект связи между парными частицами (объектами). То есть появляется возможность интерпретировать феномен когеренции без нарушения постулата специальной
теории относительности о том, что ничто во Вселенной не может перемещаться со скоростью, превышающий скорость света.
В-третьих, Эйнштейн был гениальным мыслителем с чрезвычайно развитой физической интуицией. Он прекрасно понимал азбучную истину, что от теории до практики «дистанции огромного размера». Более того, верхогляды-неспециалисты плохо различают (или не различают вообще) спецификацию теоретических построений. Очень грубо можно сказать, что есть теории «прикладные», как теория фотоэффекта Эйнштейна, а есть теории «фундаментально-абстрактные», как общая
теория относительности . Проверить последние неимоверно трудно, а строить на их основе некие приборы вообще фантастически сложно. Так вот, еще не созданная единая теория поля, несомненно, будет теорией «сверхфундаментально-абстрактной» со всеми вытекающими отсюда выводами о вероятности ее практического воплощения в неких приборах.
Что касается методов, характерных для теоретического исследования, выделим следующие. Формализация – это построение абстрактно – математических моделей, когда рассуждения о предмете переносятся в плоскость оперирования со знаками (формами), тогда производится вывод новых форм по правилам логики и математики. При аксиоматическом методе производится логический вывод на основе каких-либо заранее принятых без доказательства аксиом. Так была построена вся геометрия Евклида и даже «Этика» Спинозы. В развитой науке аксиомы предлагаются как некоторая предполагаемая к исследованию система отношений, отвлеченных от их носителя и исследуемых аппаратом математической логики. Возможности этих методов также не безграничны (как это казалось до середины 30-х годов, когда была открыта знаменитая теорема Геделя). В науках, так или иначе имеющих эмпирическую основу, более эффективным является гипотетико-дедуктивный метод. Сущность его – в создании системы связанных между собой гипотез, из которой дедуктивным образом выводятся эмпирически проверяемые (и тем самым свидетельствующие об истинности общей теории) следствия. Этим путем шло развитие и подтверждение
теории относительности , а анализ определенных следствий из нее задал целые направления современной науки.
Шредингеру принадлежит ряд фундаментальных достижений в области квантовой теории, которые легли в основу волновой механики: он сформулировал волновые уравнения (стационарное и зависящее от времени уравнения Шредингера), показал тождественность развитого им формализма и матричной механики, разработал волновомеханическую теорию возмущений. Шредингер предложил оригинальную трактовку физического смысла волновой функции. Кроме того, он является автором множества работ в различных областях физики: статистической механике и термодинамике, физике диэлектриков, теории цвета, электродинамике, общей
теории относительности и космологии; он предпринял несколько попыток построения единой теории поля.
Свое логическое на то время завершение
теория относительности получила в работах выдающегося немецкого физика Альберта Эйнштейна. Ученый сделал вывод о том, что скорость света, представляющая собой максимальную скорость передачи сигналов, конечна и имеет одну и ту же величину для всех наблюдателей, вне зависимости от их движения. Следовательно, понятия абсолютной одновременности и абсолютного времени неверны, поскольку каждая система отсчета имеет свое собственное время. Во всех системах отсчета, движущихся по отношению друг к другу равномерно и прямолинейно, действуют одни и те же законы природы, и что скорость света в вакууме одинакова для всех инерциальных систем отсчета, поскольку эта скорость предельна. Расстояние не является абсолютной величиной, а зависит от скорости движения тела относительно данной системы отсчета. Эйнштейн полагал, что всякое тело отсчета (система координат) имеет свое особое время; указание времени имеет смысл лишь тогда, когда указывается тело отсчета, к которому оно относится. Отождествление моментов времени двух событий имеет смысл, когда эти события рассматриваются в пределах некой определенной системы отсчета. События, одновременные в одной системе отсчета, оказываются неодновременными в другой системе отсчета. Размеры быстродвижущихся тел сокращаются по сравнению с длиной покоящихся тел, а при приближении скорости тела к скорости света его размеры будут приближаться к нулю.[64]
«Мы поняли, что достаточно ввести в общую
теорию относительности этот ключевой элемент – гравитационную рябь на ранних стадиях – чтобы объяснить наблюдаемое ускорение расширения Вселенной, – говорит г-н Риотто. – И нет никакой необходимости изобретать таинственные фантомы типа „темной энергии“»[2].
В 1988 году физик из Калифорнийского технологического института Кип Торн и его аспиранты Майкл Моррис и Ури Йертсевер довольно подробно описали, как можно создать подобные пространственно-временные тоннели. На основании квантовых флуктуаций так называемый вакуум постоянно создает крохотные тоннели размером с субатомную частицу. Добавив энергии и следуя другим правилам квантовой физики и общей
теории относительности (хотя эти две сферы очень сложно интегрировать), пространственно-временные тоннели теоретически можно расширить до такой степени, чтобы сквозь них могли пролететь объекты, превышающие размер субатомных частиц. Возможно, люди в них тоже поместятся, хотя это будет очень сложно. Но, как я уже говорил, достаточно будет отправить в космос нанороботов и информацию, а они смогут пролететь сквозь тоннели размером с микрон. Специалист по вычислительной нейробиологии Андерс Сандберг считает, что пространственно-временной тоннель диаметром в один нанометр способен передавать целых 1069 бит/с. Торн, Моррис и Йертсевер описали метод, соответствующий общей теории относительности и квантовой механике, позволяющий быстро создавать пространственно-временные тоннели между Землей и отдаленными регионами Вселенной, даже если пункт назначения находится на расстоянии многих световых лет.
Таким образом, движение определяет свойства, структурную организацию и характер существования материи. Движение материи многообразно по своим проявлениям и существует в различных формах. В процессе развития материи появляются качественно новые и более сложные формы движения. Но даже механическое перемещение не является абсолютно простым. В процессе перемещения тело непрерывно взаимодействует с другими телами через электромагнитное и гравитационное поля и изменяется при этом. Так,
теория относительности А. Эйнштейна указывает, что с увеличением скорости движения происходит возрастание массы тел. Всякое движение включает в себя взаимодействие различных форм движения и их взаимные превращения. Оно так же неисчерпаемо, как и сама материя. Движение материи представляет собой процесс взаимодействия противоположностей. Так, механическое движение выступает как единство прерывности и непрерывности пространства и времени; электромагнитное, ядерное и гравитационное движения основаны на единстве противоположных процессов поглощения и излучения микрочастицами квантов электромагнитного, ядерного и гравитационного полей; химическое движение включает в себя ассоциацию и диссоциацию атомов и т. д. Бесконечное самодвижение материи в космосе также выступает как результат единства противоположных процессов рассеяния материи и энергии (в ходе эволюции звезд) и их обратной концентрации, ведущей в итоге к возникновению звезд, галактик и других форм материи.
В конце XIX – начале XX в. происходит третья научная революция, результатом которой стало возникновение неклассического типа научной рациональности. На его формирование в значительной степени повлияли революционные естественнонаучные открытия. К наиболее значимым открытиям можно отнести такие, как делимость атома, обоснование квантовой теории и
теории относительности – в физике; нестационарность Вселенной – в астрономии; выявление генетического кода – в биологии. Огромное значение для формирования новой научной картины мира имело также бурное развитие психологии, психоанализа и лингвистики.
Современная физика элементарных частиц включает в себя также теорию квантовой электродинамики (КЭД), разработанную Ричардом Фейнманом и другими учеными. В нее входят не только квантовая механика, но и специальная
теория относительности . В КЭД мы занимаемся изучением отдельных частиц, в том числе фотонов – частиц света, а также электронов и других частиц, переносящих электрический заряд. Мы способны разобраться в скоростях, на которых взаимодействуют эти частицы и с которыми они могут создаваться и уничтожаться. КЭД – одна из тех теорий, которые очень активно используются в физике элементарных частиц. Кроме того, именно в ее рамках делаются самые достоверные научные предсказания. КЭД совершенно не похожа на геометрическую оптику, но обе эти теории верны, каждая в соответствующей области.
Великий ученый Никола Тесла в 1907 году в своей работе «Величайшее достижение человечества» писал о «изначальной среде» светоносном эфире, который заполняет все и является основой. Правда, появление
теории относительности Энштейна увела науку в другую сторону. Только в конце XX века В.Л.Дятлову с использованием работ ученых А.Е. Акимова, Я.П. Терлецкого, Г.И. Шипова, удалось сделать фундаментальное открытие структуры и особых физических свойств субстанции физического вакуума. Материя физического вакуума (ФВ) – субстанция с необычными свойствами.
Кажется бессмысленным говорить об организации, не называя ее материального носителя. И тем не менее нам приходится это делать. Ведь нечто подобное случилось с понятием пространства после создания общей
теории относительности , когда стали очевидными связь и единство пространства, времени и распределения материи. Теперь мы знаем, что «чистое» пространство – это некоторая фикция, некоторая абстракция. Но это вовсе не означает, что нельзя изучать свойства и особенности того же пространства, той же организации самих по себе. Изучение подобных абстракций чрезвычайно важно для науки и составляет основу многочисленных дисциплин. В конечном счете теоретическая наука в отличие от эмпирии всегда имеет дело с идеализациями реальных объектов. И не только наука. Ведь изучаем же мы законы архитектуры, не вдаваясь в изучение подробностей физических свойств тех материалов, из которых построены разнообразные шедевры зодчества, и изучаем и архитектурные формы, мало беспокоясь о том, как используются здания.
До сих пор в квантовой механике, которая возникла одновременно с
теорией относительности , не стихают бурные споры о глубинных причинах вероятностной природы нашей реальности. Каких только самых невероятных гипотез нет на эту тему! Физики-теоретики говорят о мгновенном ветвлении нашей Вселенной на мириады миров, в каждом из которых экспериментатор получает разные результаты одного и того же опыта, и об управлении окружающей действительностью «сверхсознанием» наблюдателя, и даже о действии разумных элементарных частиц и атомов! Многие романы современных писателей-фантастов выглядят на этом фоне блекло!