Связанные понятия
Фи́зика высо́ких эне́ргий — раздел физики элементарных частиц, изучающий взаимодействия элементарных частиц и/или ядер атомов при энергиях столкновения, существенно выше, чем массы самих сталкивающихся частиц (см. Эквивалентность массы и энергии).
Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалось широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники.
Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также фи́зикой высо́ких эне́ргий или субъядерной физикой — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия.
Я́дерная фи́зика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие...
Упоминания в литературе
Точно так же мы в физике классифицируем объекты по размеру, чтобы иметь возможность сосредоточиться на интересующих нас вопросах. Так, крышка письменного стола кажется нам твердой – она и есть твердая, – но на самом деле она состоит из атомов и молекул; именно они все вместе действуют как твердая непроницаемая поверхность, с которой мы каждый день имеем дело. Но сами атомы и молекулы тоже не представляют собой неделимую сущность; в каждом атоме есть ядро и электроны. А ядро атома состоит из протонов и нейтронов, которые, в свою очередь, суть более фундаментальные объекты, известные как кварки. И все же не обязательно знать о кварках, чтобы разобраться в электромагнитных и химических свойствах атомов и химических элементов (этим занимается атомная физика). Люди много лет изучали
атомную физику , прежде чем появились первые намеки на наличие так называемых элементарных частиц внутри атомов. И биологам при изучении клетки тоже не нужно знать о кварках внутри протона.
Но начиная с 1970-х годов экспериментаторы разработали способы, позволяющие наблюдать отдельные микроскопические объекты – электроны, атомы и ионы, манипулировать и управлять ими. Я помню всеобщее воодушевление на международной конференции по
атомной физике в Бостоне в 1980 году, когда Петер Тошек представил первое изображение одного захваченного иона – его можно был непосредственно наблюдать по флюоресцентным фотонам, которые он испускал под воздействием луча лазера. Благодаря прогрессу экспериментальной физики мы можем прямо наблюдать квантовые скачки, что положило конец многолетним спорам. Мы также увидели, что квантовый формализм прекрасно описывает поведение отдельного квантового объекта – при условии, что мы правильно интерпретируем вероятностные результаты расчетов. Что касается второго вопроса о свойствах запутанности, то предсказания квантовой теории сначала были проверены на фотонных парах в серии экспериментов, условия проведения которых постепенно приближаются к идеальным, в соответствии с замыслом теоретиков вроде Джона Белла. Эти эксперименты полностью подтвердили предсказания квантовой теории, какими бы удивительными те ни были.
Под понятие «эфир» стали подводить все, что, как мы теперь знаем, вызывается гравитационными и электромагнитными силами. Но поскольку другие фундаментальные силы мира до возникновения
атомной физики практически не изучались, то с помощью эфира брались объяснять любые явления и любой процесс.
Книга «Что такое жизнь?» (1944) основана на лекциях, которые были прочитаны в дублинском Тринити-колледже в феврале 1943 года. Эти лекции и книга были созданы под впечатлением от статьи Николая Тимофеева-Ресовского, Карла Циммера и Макса Дельбрюка, опубликованной в 1935 году и переданной Шредингеру Паулем Эвальдом в начале 1940-х годов. Статья посвящена изучению генетических мутаций, которые возникают под действием рентгеновского и гамма-излучений и для объяснения которых авторами была развита теория мишеней. Хотя в то время еще не была известна природа генов наследственности, взгляд на проблему мутагенеза с точки зрения
атомной физики позволил выявить некоторые общие закономерности этого процесса. Работа Тимофеева – Циммера – Дельбрюка была положена Шредингером в основу его книги, которая привлекла широкое внимание молодых физиков. Некоторые из них под ее влиянием решили заняться молекулярной биологией.
В биологии, науке о жизни и о живых существах, мы снова, но еще более явно сталкиваемся с ограниченностью жизни ее объектов. И здесь, также как и в
атомной физике , мы видим, с одной стороны, долгоживущие объекты, которые уже лучше называть существами – десятки лет и даже (но редко) более сотни лет, и, с другой стороны, существа – однодневки, типа мотыльков и иных насекомых. В этом случае понятие времени жизни – как периода между рождением и смертью – является также важной характеристикой живых существ, но уже не исчерпывает собой понятия «биологического времени», как это было в случае времени геологического, или иных времен, описывающих неживые объекты. Жизнь каждого существа – это путь, наполненный событиями, каждое из которых, с одной стороны, является уникально-неповторимым, а с другой – стадией пути от рождения к смерти.
Выдающийся датский физик-теоретик, один из основателей квантовой и
атомной физики , а также создатель «копенгагенской интерпретации квантовой механики», в которой существенное место отводится наблюдателю измерений. Основатель и бессменный директор знаменитого института теоретической физики в Копенгагене.
Связанные понятия (продолжение)
Молекулярная физика — раздел физики, который изучает физические свойства тел на основе рассмотрения их молекулярного строения. Задачи молекулярной физики решаются методами статистической механики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела.
Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается...
Фи́зика пла́змы — раздел физики, изучающий свойства и поведение плазмы, в частности, в магнитных полях. Плазма рассматривается как неструктурированная квазинейтральная система из большого числа заряженных частиц с коллективной динамикой.
Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной...
Статисти́ческая фи́зика — это раздел теоретической физики, посвященный изучению систем с произвольным (часто — бесконечным или несчетным) числом степеней свободы. Изучаемые системы могут быть как классическими, так и квантовыми.
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.
Теорети́ческая фи́зика — раздел физики, в котором в качестве основного способа познания природы используется создание теоретических (в первую очередь математических) моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является самостоятельным методом изучения природы, хотя её содержание, естественно, формируется с учётом результатов экспериментов и наблюдений за природой.
Квантовая химия — это направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением...
Квантовая оптика является более общей теорией, чем классическая оптика. Основная проблема, затрагиваемая квантовой оптикой — описание взаимодействия света с веществом с учётом квантовой природы объектов, а также описания распространения света в специфических условиях. Для того, чтобы точно решить эти задачи, требуется описывать и вещество (среду распространения, включая вакуум) и свет исключительно с квантовых позиций, однако часто прибегают к упрощениям: один из компонентов системы (свет или вещество...
Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.
Физика ускорителей — раздел физики, изучающий динамику частиц в ускорителях, а также многочисленные технические задачи, связанные с сооружением и эксплуатацией ускорителей частиц.
Сверхтеку́честь — способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разрежённых атомных бозе-конденсатах, твёрдом гелии.
Физи́ческая кине́тика (др.-греч. κίνησις — движение) — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых...
История физики исследует эволюцию физики — науки, изучающей фундаментальные (наиболее общие) свойства и законы движения объектов материального мира. Предметом истории физики являются выявление и обобщённый анализ основных событий и тенденций в развитии физических знаний.
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части.
Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.
Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью.
Статистическая механика — раздел статистической физики, изучающий методами теории вероятностей поведение систем (произвольного) конечного числа частиц. Число частиц является произвольным конечным натуральным числом. Впервые классическую статистическую механику одной частицы рассмотрел Макс Борн в 1955 году.
Асимптоти́ческая свобо́да — физический эффект, возникающий в некоторой калибровочной теории, в которой взаимодействие между частицами, такими как кварки, становится сколь угодно малым при уменьшении расстояния между частицами. Другими словами, в асимптотическом пределе r→0 частицы перестают взаимодействовать и становятся свободными.
Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объёма сверхпроводника. Существование этого эффекта показывает...
Физи́ческая о́птика — раздел оптики, изучающий оптические явления, выходящие за рамки приближения геометрической оптики. К таким явлениям относятся дифракция, интерференция света, поляризационные эффекты, а также эффекты, связанные с распространением электромагнитных волн в нелинейных и анизотропных средах.
Квантовая электроника — область физики, изучающая методы усиления и генерации электромагнитного излучения, основанные на использовании явления вынужденного излучения в неравновесных квантовых системах, а также свойства получаемых таким образом усилителей и генераторов и их применения в электронных приборах.
Ла́зерная фи́зика или фи́зика ла́зеров — раздел физики, который занимается теорией работы лазеров и их применением в научных исследованиях, промышленности, биологии, медицине, информатике и для решения других задач. Лазерная физика соединяет в себе такие разделы физики как квантовая электроника, нелинейная оптика и квантовая оптика.
Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации...
Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики...
Ядерная химия — часть химии высоких энергий, раздел физической химии — изучает ядерные реакции и сопутствующие им физико-химические процессы, устанавливает взаимосвязь между физико-химическими и ядерными свойствами вещества. Часто под ядерной химией подразумевают области исследования радиохимии (иногда как её раздел) и радиационной химии. Это разные науки, но ядерная химия является для них теоретическим фундаментом. Термин ядерная химия даже в настоящее время не является общепринятым по причине того...
Меха́ника сплошны́х сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформируемых твёрдых тел, а также силовым взаимодействиям в таких телах.
Магнитная гидродинамика — физическая дисциплина, возникшая на пересечении гидродинамики и электродинамики сплошной среды. Предметом её изучения является динамика проводящей жидкости или газа в магнитном поле. Примерами изучаемых сред являются различного рода плазма, жидкие металлы, солёная вода.
Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля.
Спектроскопи́я — раздел физики, посвящённый изучению спектров электромагнитного излучения. В более широком смысле — изучение спектров различных видов излучения. Методы спектроскопии используются для исследования энергетической структуры атомов, молекул и макроскопических тел, образованных из них. Они применяются при изучении таких макроскопических свойств тел как температура и плотность, а в аналитической химии — для обнаружения и определения веществ.
Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.
Сла́бое взаимоде́йствие — фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого...
Конденса́т Бо́зе — Эйнште́йна (бо́зе-эйнште́йновский конденса́т, бо́зе-конденса́т) — агрегатное состояние вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли кельвина). В таком, сильно охлаждённом, состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне.
Нейтро́нная фи́зика — раздел физики элементарных частиц, занимающийся исследованием нейтронов, их свойств и структуры (времени жизни, магнитного момента и др.), методов получения, а также возможностями использования в прикладных и научно-исследовательских целях.
Эксперимента́льная фи́зика — способ познания природы, заключающийся в изучении природных явлений в специально приготовленных условиях. В отличие от теоретической физики, которая исследует математические модели природы, экспериментальная физика призвана исследовать саму природу.
Физика полупроводников — раздел физики твёрдого тела, посвященный изучению особенностей физических свойств полупроводников и происходящих в них физических явлений. Предметом изучения являются структурные, электрофизические, оптические свойства полупроводников, многие из которых используются при создании полупроводниковых приборов. Методы получения и модификации свойств полупроводников относятся к разделу полупроводникового материаловедения.
Суперсимме́трия или симме́трия Фе́рми — Бо́зе — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.
Перенормиро́вка в квантовой теории поля — процедура устранения ультрафиолетовых расходимостей в классе теорий, называемых перенормируемыми. С физической точки зрения соответствует изменению начальных (затравочных) лагранжианов таких теорий с тем, чтобы результирующая динамика теории не содержала сингулярностей (и совпадала с наблюдаемой, если теория претендует на описание действительности). Другими словами, перенормировка — это уточнение лагранжиана взаимодействия с той целью, чтобы он не приводил...
Адро́н ы (от др.-греч. ἁδρός «крупный; массивный») — класс составных частиц, подверженных сильному взаимодействию. Термин предложен советским физиком Л. Б. Окунем в 1962 году, при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории. Для элементарных частиц, не участвующих в сильных взаимодействиях, Л. Б. Окунь тогда же предложил название аденоны.
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), предложенная Альбертом Эйнштейном в 1915—1916 годах.
Тео́рия струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.
Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике.
Подробнее: Сильное взаимодействие
В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.
Подробнее: Электрослабое взаимодействие