Связанные понятия
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), предложенная Альбертом Эйнштейном в 1915—1916 годах.
Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «ньютоновой механикой».
Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной...
Ква́нтовая гравита́ция — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха, — объединение таким образом гравитации с остальными тремя фундаментальными взаимодействиями, то есть построение так называемой «теории всего»).
Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.
Упоминания в литературе
В современной физике употребляется понятие калибровочной симметрии. Под калибровкой железнодорожники понимают переход с узкой колеи на широкую. В физике под калибровкой первоначально понималось также изменение уровня или масштаба. В
специальной теории относительности законы физики не изменяются относительно переноса или сдвига при калибровке расстояния. В калибровочной симметрии требование инвариантности порождает определенный конкретный вид взаимодействия. Следовательно, калибровочная инвариантность позволяет ответить на вопрос: «Почему и зачем в природе существуют такого рода взаимодействия?» В настоящее время в физике определено существование четырех типов физических взаимодействий: гравитационного, сильного, электромагнитного и слабого. Все они имеют калибровочную природу и описываются калибровочными симметриями, являющимися различными представлениями групп Ли. Это позволяет предположить существование первичного суперсимметричного поля, в котором еще нет различия между типами взаимодействий. Различия, типы взаимодействия являются результатом самопроизвольного, спонтанного нарушения симметрии исходного вакуума. Эволюция Вселенной предстает тогда как синергетический самоорганизующийся процесс: в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до «большого взрыва». Дальнейший ход ее истории пролегал через критические точки – точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. Утверждение самоорганизации систем через самопроизвольное нарушение исходного типа симметрии в точках бифуркации и есть принцип синергии.
Общая теория относительности была опубликована в 1916 г. Она распространила принципы
специальной теории относительности на неинерциальные (ускоренные) системы. Эйнштейн указал, что все системы отсчета, инерциальные и неинерциальные, равноценны для описания движения материальных объектов, и определил отличия между системами: инерциальная система движется равномерно и прямолинейно, неинерциальная система движется с ускорением. В рамках общей теории относительности он разработал полевую теорию тяготения, предположив существование гравитационного поля и особых частиц гравитации, которые назвал гравитонами.
Время в неклассической науке. Этап неклассической науки, начавшийся с изучения теории относительности (А. Эйнштейн, А. Пуанкаре, Г. Лоренц и др.), задал новый подход к пониманию времени. Так,
специальная теория относительности утверждает, что время не является одинаковым в разных ИСО – инерциальных системах отсчета (это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно). Так, свет будет проходить между двумя точками одной ИСО за одно время, а в другой ИСО за то же самое время – другое расстояние. Время движущихся объектов течет медленнее (релятивистское замедление времени), эффект замедления времени обусловлен только скоростью объекта. Известный парадокс рассматривает историю двух близнецов – один из них отправляется в космический полет, его время течет медленнее, и, когда он вернется на Землю, его часы будут отставать. В продолжение парадокса, можно сказать, что и сам брат-путешественник будет моложе, чем его «земной» близнец. Оказывается, что для решения вопроса о возникновении и необратимости времени необходимо ввести позицию наблюдателя (об этом пишет Фон Нейман). Внутреннее время, очевидно, возникает в сложных (открытых, удаленных от состояния равновесия) системах. И. Пригожин пишет: «… мы рассматриваем себя как высокоразвитую разновидность диссипативных структур и «объективно» обосновываем различие между прошлым и будущим, введенное в самом начале». Человек и природа не существуют во времени, а обладают временными свойствами.
Эйнштейн записал математические формулы – уравнения поля Эйнштейна, или просто уравнения Эйнштейна[14], которые описывают, как кривизна влияет на движение масс и как распределение масс влияет на кривизну. В отсутствие какой бы то ни было массы эти формулы сводятся к
специальной теории относительности . Так что все необычные эффекты, такие как замедление времени, присутствуют и в общей теории относительности. В самом деле, гравитация может вызвать замедление времени даже для неподвижного объекта. Как правило, такие парадоксальные эффекты слабы, но в крайних обстоятельствах поведение, предсказанное теорией относительности (любой из них), значительно отличается от Ньютоновой физики.
Важно, что КМ даёт взаимодополняющее описание любого объекта и как локализованного в пространстве-времени, и как никаким образом не локализованного. Поэтому представления о запутанных состояниях и декогеренции соотносятся с понятиями не частиц, а систем и подсистем, содержащих любое число частиц. Соответственно, нелокальные связи возникают между любыми взаимодействующими объектами, а не только между квантовыми объектами. Если исходить, следуя Бому, из того, что запутанные состояния представляют собой не отдельные локальные объекты, а проекцию более сверхглубокого и фундаментального уровня целостной реальности, то именно этот нелокальный аспект квантового потенциала позволяет объяснить эффект связи между парными частицами (объектами). То есть появляется возможность интерпретировать феномен когеренции без нарушения постулата
специальной теории относительности о том, что ничто во Вселенной не может перемещаться со скоростью, превышающий скорость света.
В 1905 году Эйнштейн завершил
специальную теорию относительности , показав, что расстояния, скорости и промежутки времени относительны и зависят от наблюдателя, и установив, что ничто не может перемещаться быстрее скорости света. Следствием из этой теории стало самое знаменитое в мире уравнение: E = mc2. В 1915 году Эйнштейн представил общую теорию относительности, которая переопределяла сущность гравитации в рамках ошеломительно новой идеи: искривления пространства и времени.
► Для тех, кто знаком со
специальной теорией относительности , упомянем о еще одном допущенном упрощении. Дело в том, что мы изображаем пустое пространство – время (ct, r) на обыкновенной евклидовой плоскости (x, y). На такой плоскости расстояние ?l между двумя точками (ct1, r1) и (ct2, r2), разделенными пространственным ?x =?r=r1−r2 и временным ?y =c?t=c(t1−t2) смещениями, вычисляется с помощью теоремы Пифагора:
Отсутствие энергетических потерь на взаимодействие с Ничто обуславливает бесконечное повторение космологического схлопывания – разворачивания, а бесконечность мира определяется тем, что граница между ним и Ничто не может быть определена опытным путем. Запрет на это логически вытекает из второго постулата
специальной теории относительности Эйнштейна, утверждающего, что скорость света не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта. Проще говоря, никакой наблюдатель не сможет обогнать границу расширяющегося мира, чтобы пощупать руками это самое Ничто.
…Как следует из
специальной теории относительности , ничто не может двигаться со скоростью, превышающей световую. Размышляя над этой проблемой, Эйнштейн представил себе луч света, искривляющийся при прохождении у края Солнца. Материя как-то изгибает пространство, и другая материя должна двигаться в таком пространстве «естественно» – так, как мы это наблюдаем. Он решил, что наиболее естественным был бы кратчайший путь между двумя заданными точками пространства. Иными словами, Солнце искривляет пространство вокруг себя, и планеты движутся эллиптическими орбитами, но в искривленном пространстве они представляют собой прямые линии.
Связанные понятия (продолжение)
Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.
При́нцип относи́тельности (принцип относительности Эйнштейна) — фундаментальный физический принцип, один из принципов симметрии, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.
Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля.
Тео́рия всего ́ — гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия. Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризациях квантовой физики для обозначения теории, которая объединила бы все четыре фундаментальных взаимодействий в природе. В современной научной литературе вместо термина «теория всего» как правило используется термин...
Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась лоренц-ковариантность.
Простра́нство-вре́мя (простра́нственно-временно́й конти́нуум) — физическая модель, дополняющая пространство равноправным временны́м измерением и таким образом создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. Пространство-время непрерывно и с математической точки зрения представляет собой многообразие с лоренцевой метрикой.
Альтернативными теориями
гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно (количественно или принципиально) модифицирующие её. К альтернативным теориям гравитации часто относят вообще любые теории, не совпадающие с общей теории относительности хотя бы в деталях или как-то обобщающие её. Тем не менее, нередко теории гравитации, особенно квантовые, совпадающие с общей теорией относительности в низкоэнергетическом пределе...
Релятивистская механика — раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) механику.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения...
В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
При́нцип наиме́ньшего де́йствия Га́мильтона (также просто принцип Гамильтона), точнее при́нцип стациона́рности де́йствия — способ получения уравнений движения физической системы при помощи поиска стационарного (часто — экстремального, обычно, в связи со сложившейся традицией определения знака действия, наименьшего) значения специального функционала — действия. Назван в честь Уильяма Гамильтона, использовавшего этот принцип для построения так называемого гамильтонова формализма в классической механике...
Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается...
По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной (называемой полевой переменной), определённой...
Симме́три́я в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого).
Суперсимме́трия или симме́трия Фе́рми — Бо́зе — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.
Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Являются наиболее общими законами в любой физической теории. Имеют большое эвристическое значение.
Супергравита́ция (от супер… и лат. gravitas — тяжесть) — обобщение общей теории относительности (ОТО) на основе суперсимметрии; или часто: многомерная супергравитация — название физических теорий, включающих дополнительные измерения, суперсимметрию и гравитацию.
Тео́рия струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.
Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей). Более доступно он звучит так: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую...
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
При́нцип соотве́тствия в методологии науки — утверждение, что любая новая научная теория должна включать старую теорию и ее результаты как частный случай. Например, закон Бойля — Мариотта является частным случаем уравнения состояния идеального газа в приближении постоянной температуры; кислоты и основания Аррениуса являются частным случаем кислот и оснований Льюиса и т. п.
Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или динамической системы (например, поля) во времени и пространстве.
Лоренцево сокращение , Фицджеральдово сокращение, также называемое релятивистское сокращение длины движущегося тела или масштаба — предсказываемый релятивистской кинематикой эффект, заключающийся в том, что с точки зрения наблюдателя, движущиеся относительно него предметы имеют меньшую длину (линейные размеры в направлении движения), чем их собственная длина. Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.
Поляризация вакуума — совокупность виртуальных процессов рождения и аннигиляции пар частиц в вакууме, обусловленных квантовыми флуктуациями. Эти процессы формируют нижнее (вакуумное) состояние систем взаимодействующих квантовых полей.
Тахио́н (от греч. ταχύς, «быстрый») — гипотетическая частица, движущаяся со скоростью, превышающей скорость света в вакууме, в противоположность обычным частицам, называемым в теоретических работах по тахионам тардионами, движущимся всегда медленнее света, способным покоиться, и люксонам (например, фотону), движущимся всегда только со скоростью света.
Гравитацио́нное по́ле , или по́ле тяготе́ния, — фундаментальное физическое поле, через которое осуществляется гравитационное взаимодействие между всеми материальными телами.
Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля.
Теория эфира Лоренца (ТЭЛ) уходит своими корнями в «теорию электронов» Х. Лоренца, которая была последней точкой в разработке теорий классического эфира в конце XIX — начале XX века.
Станда́ртная моде́ль — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Экспериментальное подтверждение существования промежуточных векторных бозонов в середине 80-х годов завершило построение Стандартной модели и её принятие как основной. Необходимость незначительного расширения...
Перенормиро́вка в квантовой теории поля — процедура устранения ультрафиолетовых расходимостей в классе теорий, называемых перенормируемыми. С физической точки зрения соответствует изменению начальных (затравочных) лагранжианов таких теорий с тем, чтобы результирующая динамика теории не содержала сингулярностей (и совпадала с наблюдаемой, если теория претендует на описание действительности). Другими словами, перенормировка — это уточнение лагранжиана взаимодействия с той целью, чтобы он не приводил...
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.
Копенга́генская интерпрета́ция — интерпретация (толкование) квантовой механики, которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года. Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции, данную М. Борном, и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.
Виртуа́льная части́ца — объект, который характеризуется почти всеми квантовыми числами, присущими одной из реальных элементарных частиц, но для которого нарушена свойственная последней связь между энергией и импульсом частицы. Понятие о виртуальных частицах возникло в квантовой теории поля. Такие частицы, родившись, не могут «улететь на бесконечность»; они обязаны либо поглотиться какой-либо частицей, либо распасться на реальные частицы. Известные в физике фундаментальные взаимодействия протекают...
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие...
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части.
Ста́рая ква́нтовая тео́рия (иногда ста́рая ква́нтовая меха́ника) — подход к описанию атомных явлений, который был развит в 1900—1924 годах и предшествовал квантовой механике. Характерная черта теории — использование классической механики и некоторых предположений, вступавших в противоречие с ней. Основа старой квантовой теории — модель атома Бора, к которой позже Арнольд Зоммерфельд добавил квантование z-компоненты углового момента, которое неудачно назвали пространственным квантованием. Квантование...
Согласно концепции переме́нной ско́рости све́та (ПСС) считается, что скорость света в вакууме, обычно обозначаемая c, в некоторых случаях может не быть константой. В большинстве ситуаций в физике конденсированного состояния распространение света в среде действительно происходит с меньшей скоростью, чем в вакууме. Кроме того, в некоторых расчётах квантовой теории поля необходимо учитывать, что виртуальные фотоны должны двигаться на короткие расстояния в том числе со скоростью, отличной от скорости...
Подробнее: Переменная скорость света
Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.
В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.
Подробнее: Электрослабое взаимодействие
Хи́ггсовский механи́зм или механи́зм Хи́ггса, предложенный английским физиком Питером Хиггсом в 1964 г. и основанный на предположении Филиппа Андерсона, — теория, которая описывает, как приобретают массы все элементарные частицы. Например, он делает Z-бозон отличным от фотона. Этот механизм может быть рассмотрен как элементарный случай тахионной конденсации, где роль тахиона играет скалярное поле, названное полем Хиггса. Массивный квант этого поля был назван бозоном Хиггса.
Подробнее: Механизм Хиггса