Связанные понятия
Обработка естественного языка (Natural Language Processing, NLP) — общее направление искусственного интеллекта и математической лингвистики. Оно изучает проблемы компьютерного анализа и синтеза естественных языков. Применительно к искусственному интеллекту анализ означает понимание языка, а синтез — генерацию грамотного текста. Решение этих проблем будет означать создание более удобной формы взаимодействия компьютера и человека.
Анализ данных — область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений. Анализ данных имеет множество аспектов и подходов, охватывает разные методы в различных областях науки и деятельности.
Глубокое обучение (глубинное обучение; англ. Deep learning) — совокупность методов машинного обучения (с учителем, с частичным привлечением учителя, без учителя, с подкреплением), основанных на обучении представлениям (англ. feature/representation learning), а не специализированным алгоритмам под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е (и даже ранее), но результаты были невпечатляющими, пока продвижения в теории искусственных нейронных сетей (предобучение нейросетей...
Теория распознава́ния о́браза — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно...
Компьютерное зрение (иначе техническое зрение) — теория и технология создания машин, которые могут производить обнаружение, отслеживание и классификацию объектов.
Больши́е да́нные (англ. big data, ) — обозначение структурированных и неструктурированных данных огромных объёмов и значительного многообразия, эффективно обрабатываемых горизонтально масштабируемыми программными инструментами, появившимися в конце 2000-х годов и альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.
Распределённые вычисления — способ решения трудоёмких вычислительных задач с использованием нескольких компьютеров, чаще всего объединённых в параллельную вычислительную систему. Распределённые вычисления применимы также в распределённых системах управления.Последовательные вычисления в распределённых системах выполняются с учётом одновременного решения многих задач. Особенностью распределённых многопроцессорных вычислительных систем, в отличие от локальных суперкомпьютеров, является возможность...
Имитационное моделирование (англ. simulation modeling) — метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему (построенная модель описывает процессы так, как они проходили бы в действительности), с которой проводятся эксперименты с целью получения информации об этой системе. Такую модель можно «проиграть» во времени, как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером...
Нейронная сеть (биологическая нейронная сеть) — совокупность нейронов головного и спинного мозга центральной нервной системы (ЦНС) и ганглия периферической нервной системы (ПНС), которые связаны или функционально объединены в нервной системе, выполняют специфические физиологические функции.
Обуче́ние с учи́телем (англ. Supervised learning) — один из способов машинного обучения, в ходе которого испытуемая система принудительно обучается с помощью примеров «стимул-реакция». С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Между входами и эталонными выходами (стимул-реакция) может существовать некоторая зависимость, но она неизвестна. Известна только конечная совокупность прецедентов — пар «стимул-реакция», называемая обучающей выборкой. На основе этих...
Обучение с подкреплением (англ. reinforcement learning) — один из способов машинного обучения, в ходе которого испытуемая система (агент) обучается, взаимодействуя с некоторой средой. С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Откликом среды (а не специальной системы управления подкреплением, как это происходит в обучении с учителем) на принятые решения являются сигналы подкрепления, поэтому такое обучение является частным случаем обучения с учителем, но учителем...
Обучение без учителя (самообучение, спонтанное обучение, англ. Unsupervised learning) — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости...
Извлечение информации (англ. information extraction) — это задача автоматического извлечения (построения) структурированных данных из неструктурированных или слабоструктурированных машиночитаемых документов.
Задача классифика́ции — задача, в которой имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется выборкой. Классовая принадлежность остальных объектов неизвестна. Требуется построить алгоритм, способный классифицировать (см. ниже) произвольный объект из исходного множества.
База знаний (БЗ; англ. knowledge base, KB) — база данных, содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области (ISO/IEC/IEEE 24765-2010, ISO/IEC 2382-1:1993). В самообучающихся системах база знаний также содержит информацию, являющуюся результатом решения предыдущих задач.
Визуализация данных — это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению. Визуализация данных находит широкое применение в научных и статистических исследованиях (в частности, в прогнозировании, интеллектуальном анализе данных, бизнес-анализе), в педагогическом дизайне для обучения и тестирования, в новостных сводках и аналитических обзорах. Визуализация данных связана с визуализацией информации, инфографикой, визуализацией научных данных, разведочным...
Распознавание речи — процесс преобразования речевого сигнала в цифровую информацию (например, текстовые данные). Обратной задачей является синтез речи.
Информацио́нный по́иск (англ. information retrieval) — процесс поиска неструктурированной документальной информации, удовлетворяющей информационные потребности, и наука об этом поиске.
Экспе́ртная систе́ма (ЭС, англ. expert system) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х годах получили коммерческое подкрепление. Предшественники экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения...
Алгори́тм (лат. algorithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться...
Эволюционные алгоритмы — направление в искусственном интеллекте (раздел эволюционного моделирования), которое использует и моделирует процессы естественного отбора.
Распределённая система — система, для которой отношения местоположений элементов (или групп элементов) играют существенную роль с точки зрения функционирования системы, а, следовательно, и с точки зрения анализа и синтеза системы.
Выделение признаков — это процесс снижения размерности, в котором исходный набор сырых переменных сокращается до более управляемых групп (признаков) для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных.
Параллельные вычисления — способ организации компьютерных вычислений, при котором программы разрабатываются как набор взаимодействующих вычислительных процессов, работающих параллельно (одновременно). Термин охватывает совокупность вопросов параллелизма в программировании, а также создание эффективно действующих аппаратных реализаций. Теория параллельных вычислений составляет раздел прикладной теории алгоритмов.
Исчисление процессов или алгебра процессов — семейство связанных подходов к формальному моделированию параллельных систем.
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Многоагентная система (МАС, англ. Multi-agent system) — это система, образованная несколькими взаимодействующими интеллектуальными агентами. Многоагентные системы могут быть использованы для решения таких проблем, которые сложно или невозможно решить с помощью одного агента или монолитной системы. Примерами таких задач являются онлайн-торговля, ликвидация чрезвычайных ситуаций, и моделирование социальных структур.
Онтоло́гия в информатике (новолат. ontologia от др.-греч. ὤν род. п. ὄντος — сущее, то, что существует и λόγος — учение, наука) — это попытка всеобъемлющей и подробной формализации некоторой области знаний с помощью концептуальной схемы. Обычно такая схема состоит из структуры данных, содержащей все релевантные классы объектов, их связи и правила (теоремы, ограничения), принятые в этой области. Этот термин в информатике является производным от древнего философского понятия «онтология».
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении), в информатике и в исследованиях искусственного интеллекта.
Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.
Скрытая марковская модель (СММ) — статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, и задачей ставится разгадывание неизвестных параметров на основе наблюдаемых. Полученные параметры могут быть использованы в дальнейшем анализе, например, для распознавания образов. СММ может быть рассмотрена как простейшая байесовская сеть доверия.
Параллельные вычислительные системы — это физические компьютерные, а также программные системы, реализующие тем или иным способом параллельную обработку данных на многих вычислительных узлах.Например, для быстрой сортировки массива на двухпроцессорной машине можно разделить массив пополам и сортировать каждую половину на отдельном процессоре. Сортировка каждой половины может занять разное время, поэтому необходима синхронизация.
Генети́ческий алгори́тм (англ. genetic algorithm) — это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Является разновидностью эволюционных вычислений, с помощью которых решаются оптимизационные задачи с использованием методов естественной эволюции, таких как наследование, мутации, отбор и кроссинговер. Отличительной...
Наука о данных (англ. data science; иногда даталогия — datalogy) — раздел информатики, изучающий проблемы анализа, обработки и представления данных в цифровой форме. Объединяет методы по обработке данных в условиях больших объёмов и высокого уровня параллелизма, статистические методы, методы интеллектуального анализа данных и приложения искусственного интеллекта для работы с данными, а также методы проектирования и разработки баз данных.
В информатике параллели́зм — это свойство систем, при котором несколько вычислений выполняются одновременно, и при этом, возможно, взаимодействуют друг с другом. Вычисления могут выполняться на нескольких ядрах одного чипа с вытесняющим разделением времени потоков на одном процессоре, либо выполняться на физически отдельных процессорах. Для выполнения параллельных вычислений разработаны ряд математических моделей, в том числе сети Петри, исчисление процессов, модели параллельных случайных доступов...
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Формальные методы занимаются приложением довольно широкого класса фундаментальных техник теоретической информатики: разные исчисления логики, формальных языков, теории автоматов, формальной семантики, систем типов и алгебраических типов данных.
Теория языков программирования (англ. programming language theory, PLT) — раздел информатики, посвящённый вопросам проектирования, анализа, определения характеристик и классификации языков программирования и изучением их индивидуальных особенностей. Тесно связана с другими ветвями информатики, результаты теории используются в математике, в программной инженерии и лингвистике.
Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных.
Интеллектуальный агент в первом смысле — это часть технологии разработки операционных систем, и хотя алгоритмы, в нём используемые, могут базироваться на более сложных моделях, чем даже алгоритмы многих SCADA — систем, диапазон и методика его воздействия на состояние системы очень жестко детерминируется. «Интеллектуальный агент» во втором смысле так же не может быть полностью независимым, выполняя свои задачи, но методики его разработки на много порядков сложнее, в силу абсолютно иного уровня сложности...
Храни́лище да́нных (англ. Data Warehouse) — предметно-ориентированная информационная база данных, специально разработанная и предназначенная для подготовки отчётов и бизнес-анализа с целью поддержки принятия решений в организации. Строится на базе систем управления базами данных и систем поддержки принятия решений. Данные, поступающие в хранилище данных, как правило, доступны только для чтения.
Семанти́ческая паути́на (англ. semantic web) — это общедоступная глобальная семантическая сеть, формируемая на базе Всемирной паутины путём стандартизации представления информации в виде, пригодном для машинной обработки.
Структура данных (англ. data structure) — программная единица, позволяющая хранить и обрабатывать множество однотипных и/или логически связанных данных в вычислительной технике. Для добавления, поиска, изменения и удаления данных структура данных предоставляет некоторый набор функций, составляющих её интерфейс.
Агентное моделирование (англ. agent-based model (ABM))— метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом. В отличие от системной динамики аналитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).
Метод обратного распространения ошибки (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С.И. Барцевым и В.А. Охониным (Красноярская группа). Это итеративный градиентный алгоритм, который используется...
Схема базы данных включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных.
Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами. Обработка изображений может осуществляться как для получения изображения на выходе (например, подготовка к полиграфическому тиражированию, к телетрансляции и т. д.), так и для получения другой информации (например, распознание текста, подсчёт числа и типа клеток в поле микроскопа и т. д.). Кроме статичных двухмерных изображений, обрабатывать требуется...