Связанные понятия
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Упоминания в литературе
Теперь об эффективности обработки информации в миварных сетях, которые отвечают за обработку информации в миварном подходе. У Дж. Люгера, как и у многих других исследователей, неоднократно указано, что обработка информации в семантических сетях и исчислениях предикатов носит явно выраженный NP-полный характер. Это обусловлено тем, что вся обработка ведется на основе теории графов, путем применения "графа пространства состояний" [264, стр. 66]. Но далее у Дж. Люгера идет важное обобщение: "Несмотря на эту очевидную универсальность,
поиска в пространстве состояний не достаточно для автоматизации интеллектуального поведения, обеспечивающего (автоматическое) решение проблем" [264, стр. 69]. Далее показано, что если бы поиска в пространстве состояний было достаточно, то нужно было бы осуществлять полный поиск по всему пространству состояний. Этот метод известен как "исчерпывающий поиск" или "поиск методом полного перебора". "Хотя полный перебор может применяться в любом пространстве состояний, огромный размер пространства для интересных задач делает этот подход практически неприемлемым… поиск в пространстве состояний можно использовать для практического подхода к любой проблеме. Поиск обеспечивает структуру для автоматизации решения задач, но эта структура лишена интеллекта. Такой подход не дает возможности формально описать задачу. Кроме того, простой полный перебор большого пространства вообще практически неосуществим и непригоден для описания сущности разумной деятельности" [264, стр. 69]. Подчеркнем, что это не наш вывод, но мы его полностью поддерживаем.
Связанные понятия (продолжение)
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Переобучение (переподгонка, пере- в значении «слишком», англ. overfitting) в машинном обучении и статистике — явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).
Поиск с возвратом , бэктрекинг (англ. backtracking) — общий метод нахождения решений задачи, в которой требуется полный перебор всех возможных вариантов в некотором множестве М. Как правило позволяет решать задачи, в которых ставятся вопросы типа: «Перечислите все возможные варианты …», «Сколько существует способов …», «Есть ли способ …», «Существует ли объект…» и т. п.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Итеративное сжатие — это алгоритмическая техника разработки фиксированно-параметрически разрешимых алгоритмов, в которой один элемент (такой как вершина графа) добавляется в задачу на каждом шаге и используется небольшое решение задачи перед добавлением элемента, чтобы найти небольшое решение задачи после добавления.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
Алгоритм распространения доверия (англ. belief propagation, также алгоритм «sum-product») — алгоритм маргинализации с помощью двунаправленной передачи сообщений на графе, применяемый для вывода на графических вероятностных моделях (таких как байесовские и марковские сети). Предложен Дж. Перлом в 1982 году.
Обучение дерева решений использует дерево решений (как предиктивную модель), чтобы перейти от наблюдений над объектами (представленными в ветвях) к заключениям о целевых значениях объектов (представленных в листьях). Это обучение является одним из подходов моделирования предсказаний, используемых в статистике, интеллектуальном анализе данных и обучении машин. Модели деревьев, в которых целевая переменная может принимать дискретный набор значений, называются деревьями классификации. В этих структурах...
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Выделение признаков — это процесс снижения размерности, в котором исходный набор сырых переменных сокращается до более управляемых групп (признаков) для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Обуче́ние ранжи́рованию (англ. learning to rank или machine-learned ranking, MLR) — это класс задач машинного обучения с учителем, заключающихся в автоматическом подборе ранжирующей модели по обучающей выборке, состоящей из множества списков и заданных частичных порядков на элементах внутри каждого списка. Частичный порядок обычно задаётся путём указания оценки для каждого элемента (например, «релевантен» или «не релевантен»; возможно использование и более, чем двух градаций). Цель ранжирующей модели...
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Цикломати́ческая сло́жность програ́ммы (англ. cyclomatic complexity of a program) — структурная (или топологическая) мера сложности компьютерной программы. Мера была разработана Томасом Дж. Маккейбом в 1976 году.
Поиск клонов в исходном коде - анализ исходного кода с помощью различных алгоритмов, с целью обнаружения клонированного кода, который может иметь вредоносный характер.
Статистическая теория обучения — это модель для обучения машин на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи, биоинформатика и бейсбол.
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Универса́льное хеши́рование (англ. Universal hashing) — это вид хеширования, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму. Такой подход обеспечивает равномерное хеширование: для очередного ключа вероятности помещения его в любую ячейку совпадают. Известно несколько семейств универсальных хеш-функций, которые имеют многочисленные применения в информатике, в частности в хеш-таблицах, вероятностных алгоритмах и криптографии...
Функция приспособленности (англ. fitness function) — вещественная или целочисленная функция одной или нескольких переменных, подлежащая оптимизации в результате работы генетического алгоритма, направляет эволюцию в сторону оптимального решения. Является одним из частных случаев целевой функции.
Вычисления с оракулом — вычисление с помощью машины Тьюринга, дополненной оракулом с неизвестным внутренним устройством.
Разделяй и властвуй (англ. divide and conquer) в информатике — важная парадигма разработки алгоритмов, заключающаяся в рекурсивном разбиении решаемой задачи на две или более подзадачи того же типа, но меньшего размера, и комбинировании их решений для получения ответа к исходной задаче; разбиения выполняются до тех пор, пока все подзадачи не окажутся элементарными.
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Ана́лиз свя́зей или анализ ссылок (от англ. «link analysis») — это метод анализа данных, используемый в рамках сетевого анализа для оценки отношений (связей) между узлами (объектами/акторами). Отношения могут быть определены для различных типов узлов: людей, организаций, операций и т. д.
Графовая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами.
Локальный уровень выброса является алгоритмом в выявлении аномалий, который предложили Маркус М. Бройниг, Ганс-Петер Кригель, Реймонд Т. Нг и Ёрг Сандер в 2000 году для нахождения аномальных точек данных путём измерения локального отклонения данной точки данных с учётом её соседей.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Параметрическая редукция — это техника для разработки эффективных алгоритмов, которые достигают своей эффективности путём препроцессорного шага, в котором вход алгоритма заменяется на меньший вход, называемый «ядром». Результат решения задачи на ядре должен быть либо тем же самым, что и при исходных данных, либо выход решения для ядра должен легко преобразовываться в желаемый выход исходной задачи.
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Алгоритм для дерева сочленений — это метод, используемый в машинном обучении для извлечения маргинализации в графах общего вида. В сущности, алгоритм осуществляет распространение доверия на модифицированном графе, называемом деревом сочленений. Основная посылка алгоритма — исключить циклы путём кластеризации их в узлы.
Задача о покрытии множества является классическим вопросом информатики и теории сложности. Данная задача обобщает NP-полную задачу о вершинном покрытии (и потому является NP-сложной). Несмотря на то, что задача о вершинном покрытии сходна с данной, подход, использованный в приближённом алгоритме, здесь не работает. Вместо этого мы рассмотрим жадный алгоритм. Даваемое им решение будет хуже оптимального в логарифмическое число раз. С ростом размера задачи качество решения ухудшается, но всё же довольно...
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.
Эффективность алгоритма — это свойство алгоритма, которое связано с вычислительными ресурсами, используемыми алгоритмом. Алгоритм должен быть проанализирован с целью определения необходимых алгоритму ресурсов. Эффективность алгоритма можно рассматривать как аналог производственной производительности повторяющихся или непрерывных процессов.
Классификация документов — одна из задач информационного поиска, заключающаяся в отнесении документа к одной из нескольких категорий на основании содержания документа.
Удаление общих подвыражений (англ. Common subexpression elimination или CSE) — оптимизация компилятора, которая ищет в программе вычисления, выполняемые более одного раза на рассматриваемом участке, и удаляет вторую и последующие одинаковые операции, если это возможно и эффективно. Данная оптимизация требует проведения анализа потока данных для нахождения избыточных вычислений и практически всегда улучшает время выполнения программы в случае применения.
В теории вычислительной сложности сложность алгоритма в среднем — это количество неких вычислительных ресурсов (обычно — время), требуемое для работы алгоритма, усреднённое по всем возможным входным данным. Понятие часто противопоставляется сложности в худшем случае, где рассматривается максимальная сложность алгоритма по всем входным данным.