Понятия со словосочетанием «равносторонний треугольник»

Связанные понятия

Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
В геометрии шестиугольная антипризма — это 4-я в бесконечном множестве антипризм, образованная чётным числом треугольных сторон между двумя шестиугольными сторонами.
Усечённый икосаэдр — многогранник, состоящий из 12 правильных пятиугольников и 20 правильных шестиугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся 2 шестиугольника и пятиугольник. Каждый из пятиугольников со всех сторон окружён шестиугольниками. Усечённый икосаэдр — один из самых распространённых полуправильных многогранников, так как именно эту форму имеет классический футбольный мяч (если представить его пятиугольники и шестиугольники, обычно окрашенные соответственно...
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
Ромбоикосододекаэдр — полуправильный многогранник, состоящий из 12 правильных пятиугольников, 30 квадратов и 20 треугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся треугольник, пятиугольник и 2 квадрата.
Антипризма — полуправильный многогранник, у которого две параллельные грани (основания) — равные между собой правильные n-угольники, а остальные 2n граней (боковые грани) — правильные треугольники.
Серединный многоугольник (многоугольник Казнера) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
Наращённый усечённый тетра́эдр — один из многогранников Джонсона (J65, по Залгаллеру — М10+М4).
Скру́ченно удлинённая четырёхуго́льная бипирами́да — один из многогранников Джонсона (J17, по Залгаллеру — М2+А4+М2), дельтаэдр.
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
Наращённый усечённый додека́эдр — один из многогранников Джонсона (J68, по Залгаллеру — М6+М12).
Уплощённая треуго́льная клинорото́нда — один из многогранников Джонсона (J92, по Залгаллеру — М20).
В геометрии японская теорема утверждает, что центры окружностей, вписанных в определённые треугольники внутри вписанного в окружность четырёхугольника, являются вершинами прямоугольника.
Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их...
Пра́вильный икоса́эдр (от др.-греч. εἴκοσι «двадцать»; ἕδρον «сиденье», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J54, по Залгаллеру — П6+М2).
Треугольная бипирамида — это вид шестигранника, первый многогранник в бесконечной последовательности гранетранзитивных бипирамид. Многогранник двойственен треугольной призме.
Удлинённая четырёхуго́льная бипирами́да — один из многогранников Джонсона (J15, по Залгаллеру — М2+П4+М2).
В евклидовой геометрии ортодиагональный четырёхугольник — это четырёхугольник, в котором диагонали пересекаются под прямым углом.
Ромботриаконтáэдр( от греч. τριάκοντα (греч. τριάντα) — «тридцать» и εδρον — «грань») — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.

Подробнее: Ромботриаконтаэдр
Два́жды противополо́жно наращённый усечённый додека́эдр — один из многогранников Джонсона (J69, по Залгаллеру — М6+М12+М6).
Два́жды ко́со наращённый усечённый додека́эдр — один из многогранников Джонсона (J70, по Залгаллеру — М12+2М6).
Противополо́жно скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J77, по Залгаллеру — М14+М6).
Наращённая треуго́льная при́зма — один из многогранников Джонсона (J49, по Залгаллеру — П3+М2).
Ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J78, по Залгаллеру — М13+М6+М6).
Огранка является обратным или двойственным образованию звёздчатой формы. Для каждой звёздчатой формы некоторого выпуклого многогранника существует двойственная огранка двойственного многогранника.
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
Два́жды ко́со наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J56, по Залгаллеру — П6+2М2).
Три́жды наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J57, по Залгаллеру — П6+3М2).
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Удлинённая треуго́льная бипирами́да — один из многогранников Джонсона (J14, по Залгаллеру — М1+П3+М1).
Вневпи́санная окружность треугольника — окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон. У любого треугольника существует три вневписанных окружности (в отличие от единственной вписанной).
Скру́ченно удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J10, по Залгаллеру — М2+А4).
Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой (то есть 90 градусов).
Скру́ченно удлинённая пятиуго́льная пирами́да, или отсечённый икоса́эдр — один из многогранников Джонсона (J11, по Залгаллеру — М3+А5).
Наращённый додека́эдр — один из многогранников Джонсона (J58, по Залгаллеру — М15+М3).
Два́жды противополо́жно наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J55, по Залгаллеру — М2+П6+М2).
Наращённый усечённый куб — один из многогранников Джонсона (J66, по Залгаллеру — М11+М5).
Пятиугольная антипризма — это третья в бесконечном ряду антипризм, образованных чётным набором треугольных сторон и закрытых с обеих сторон двумя многоугольниками. Она состоит из двух пятиугольников, связанных друг с другом кольцом из 10 треугольников, что даёт в сумме 12 граней. Таким образом, многогранник является неправильным додекаэдром.
Отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J76, по Залгаллеру — М6+М14=2М6+М13).
Скру́ченный два́жды отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J82, по Залгаллеру — М14+М6).
Растянутый кубооктаэдр — это многогранник, построенный как растяжение кубооктаэдра. Он имеет 50 граней: 8 треугольников, 30 квадратов и 12 ромбов. 48 вершин разбиваются на два множества по 24 вершины со слегка различным расстоянием от центра.
Два́жды ко́со отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J81, по Залгаллеру — М13+М6).
Два́жды противополо́жно отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J80, по Залгаллеру — М14).
Три́жды наращённый усечённый додека́эдр — один из многогранников Джонсона (J71, по Залгаллеру — М12+3М6).
Три́жды отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J83, по Залгаллеру — М13).
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я