Понятия со словом «регрессионный»
Связанные понятия
Статистический вывод (англ. statistical inference), также называемый индуктивной статистикой (англ. inferential statistics, inductive statistics) — обобщение информации из выборки для получения представления о свойствах генеральной совокупности.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...
Описательная статистика или дескриптивная статистика (англ. descriptive statistics) занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Выборочные моменты в математической статистике — это оценка теоретических моментов распределения на основе выборки.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий...
Смещение вследствие пропущенных переменных (англ. Omitted variable bias) — явление в регрессионном анализе, связанное с получением, смещённых и несостоятельных оценок регрессионных коэффициентов вследствие некорректной спецификации модели, а именно невключения в оцениваемую модель независимых переменных, оказывающих причинно-следственное влияние на зависимую переменную, или невозможности включить в неё некую ненаблюдаемую независимую переменную.
Эмпирические исследования – наблюдение и исследование конкретных явлений, эксперимент, а также обобщение, классификация и описание результатов исследования эксперимента, внедрение их в практическую деятельность человека.
Критерии нормальности — это группа статистических критериев, предназначенных для проверки нормальности распределения. Критерии нормальности являются частным случаем критериев согласия.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Тест Хаусмана, называемый также тестом Ву-Хаусмана или Дарбина-Ву-Хаусмана — применяемый в эконометрике тест для сравнения моделей, оцененных разными методами, один из которых позволяет получить состоятельные оценки и при нулевой и при альтернативной гипотезе, а другой — только при нулевой гипотезе.
Гомоскедастичность (англ. homoscedasticity) — однородная вариативность значений наблюдений, выражающаяся в относительной стабильности, гомогенности дисперсии случайной ошибки регрессионной модели. Явление, противоположное гетероскедастичности. Является обязательным предусловием применения метода наименьших квадратов, который может быть использован только для гомоскедастичных наблюдений.
Экзогенность — буквально «внешнее происхождение» — свойство факторов (и важнейшее требование, предъявляемое к ним) эконометрических моделей, заключающееся в предопределённости, заданности их значений, независимости от функционирования моделируемой системы (явления, процесса). Экзогенность противоположна эндогенности. Значения экзогенных переменных определяется вне модели, и на их основе в рамках рассматриваемой модели определяются значения эндогенных переменных.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной...
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Усечённая регрессия (англ. Truncated regression) или регрессия с урезанной выборкой — модель регрессии в условиях, когда выборка осуществляется только из тех наблюдений, которые, которые удовлетворяют априорным ограничениям, которые обычно формулируются как ограничение снизу и (или) сверху зависимой переменной. Урезание выборки приводит к смещенности МНК -оценок, поэтому оцениваются такие модели с помощью метода максимального правдоподобия.
Среднее Тьюки (средневзвешенное Тьюки) представляет собой меру центральной тенденции, относящуюся к разряду устойчивых (робастных) мер. Расчет среднего Тьюки может носить как одношаговый, так и итерационный характер.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Статистические оценки — это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Лине́йность по пара́метрам — свойство экономических моделей, позволяющее рассматривать их с эконометрической точки зрения (с точки зрения оценки параметров) как линейные модели.
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Тест Бройша — Пагана или Бреуша — Пагана (англ. Breusch-Pagan test) — один из статистических тестов для проверки наличия гетероскедастичности случайных ошибок регрессионной модели. Применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных. При этом в данном тесте проверяется линейная зависимость дисперсии случайных ошибок от некоторого набора переменных.
Скалярное ранжирование — подход к решению многокритериальных задач принятия решений, когда множество показателей качества (критериев оптимальности) сводятся в один с помощью функции скаляризации — целевой функции задачи принятия решения.
Вариационная статистика — исчисление числовых и функциональных характеристик эмпирических распределений. Если в какой-либо группе объектов показатель изучаемого признака изменяется (варьирует) от объекта к объекту, то каждому значению такого показателя х1 …, хn (n — общее количество объектов) ставят в соответствие одну и ту же вероятность, равную 1/n. Такое формально введенное «распределение вероятностей», называется эмпирическим, можно истолковать как распределение вероятностей некоторой искусственно...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Фа́кторный анализ — многомерный метод, применяемый для изучения взаимосвязей между значениями переменных. Предполагается, что известные переменные зависят от меньшего количества неизвестных переменных и случайной ошибки.
Вероятностный латентно-семантический анализ (ВЛСА), также известный как вероятностное латентно-семантическое индексирование (ВЛСИ, особенно в области информационного поиска) — это статистический метод анализа корреляции двух типов данных. Данный метод является дальнейшим развитием латентно-семантического анализа. ВЛСА применяется в таких областях как информационный поиск, обработка естественного языка, машинное обучение и смежных областях.
Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества. Задача, в которой динамическая система описывается линейными дифференциальными уравнениями, а показатель качества представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления. Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы...
Фиксированные эффекты с индивидуальными наклонами (англ. Fixed effects with invidual-specific slopes, fixed effects with individual slopes, FEIS, FE-IS) — разновидность регрессионного анализа на панельных данных с фиксированными эффектами, позволяющая получать оценки не только индивидуального эффекта в общей константе модели (как делает стандартная FE-модель), но и вводить характерные для индивидов в выборке наклоны для независимой переменной. FEIS-оценки были впервые введены в статье (Polachek...
Модель упорядоченного выбора (упорядоченная регрессия, англ. ordered choice) — применяемая в эконометрике модель с упорядоченной (с ранжированными значениями) дискретной зависимой переменной, в качестве которой могут выступать, например, оценки чего-либо по пятибалльной шкале, рейтинги компаний и т. д. В рамках данной модели предполагается, что количество значений зависимой переменной конечно.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В отличие от t-критерия, позволяет сравнивать средние значения трёх и более групп. Разработан Р. Фишером для анализа результатов экспериментальных исследований. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of VAriance).
В математической статистике неравенством Краме́ра — Ра́о (в честь Гаральда Крамера и К. Р. Рао) называется неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая её через информацию Фишера. Известно его обобщение в квантовой теории оценивания (квантовое неравенство Крамера — Рао).
Кванти́ли распределе́ния Стью́дента (коэффициенты Стьюдента) — числовые характеристики, широко используемые в задачах математической статистики, таких как построение доверительных интервалов и проверка статистических гипотез.
Функция предельного правдоподобия (англ. Marginal Likelihood Function) или интегрированное правдоподобие (англ. integrated likelihood) — это функция правдоподобия, в которой некоторые переменные параметры исключены. В контексте байесовской статистики, функция может называться обоснованностью (англ. evidence) или обоснованностью модели (англ. model evidence).
Подробнее: Предельное правдоподобие