Ковариантность и контравариантность (математика)

  • Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными — те, которые изменяются так же, как и базис.

    Связь между ковариантными и контравариантными координатами тензора возможна только в пространствах, где задан метрический тензор (не следует путать с метрическим пространством).

    Термины ковариантность и контравариантность были введены Сильвестром в 1853 году для исследований по алгебраической теории инвариантов.

Источник: Википедия

Связанные понятия

В этой статье рассматривается математический базис общей теории относительности.

Подробнее: Математическая формулировка общей теории относительности
Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Скаля́р (от лат. scalaris — ступенчатый) — величина, полностью определяемая в любой координатной системе одним числом или функцией, которое не меняется при изменении пространственной системы координат. В математике под «числами» могут подразумеваться элементы произвольного поля, тогда как в физике имеются в виду действительные или комплексные числа. О функции, принимающей скалярные значения, говорят как о скалярной функции.
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.
Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.
Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Метри́ческий те́нзор, или ме́трика, — это симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Отношение инцидентности — это бинарное отношение между двумя различными типами объектов. Это включает понятия, которые можно выразить такими фразами как «точка лежит на прямой» или «прямая принадлежит плоскости». Наиболее существенное отношение инцидентности — между точкой P и прямой l, которое записывается как P I l. Если P I l, пара (P, l) называется флагом. В разговорном языке существует много выражений, описывающих отношение инцидентности (например, прямая проходит через точку, точка лежит на...

Подробнее: Инцидентность (геометрия)
Статическая изотропная метрика — это метрика определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого (ничем не заполненного) пространства-времени.
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Дифференциальное исчисление над коммутативными алгебрами — раздел коммутативной алгебры, возникший в семидесятых годах прошлого века.
В математике, матричная функция — это функция, отображающая матрицу в другую матрицу.
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
Бра и кет (англ. bra-ket < bracket скобка) — алгебраический формализм (система обозначений), предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой.
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.

Подробнее: Монодромия
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности, не изменяется при изометрических изгибаниях.
Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Ориента́ция, в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Бесконечномерное пространство — векторное пространство c бесконечно большой размерностью.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Ковариа́нтный метод — подход в теоретической физике, разработанный Ф. И. Фёдоровым на основе линейной алгебры и прямого тензорного исчисления. Получил распространение в приложении к описанию оптических явлений и, частично, в физике элементарных частиц.
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.

Подробнее: Кэлеров дифференциал
Классификация Петрова (иногда классификация Петрова — Пирани, редко классификация Петрова — Пирани — Пенроуза) описывает возможные алгебраические симметрии тензора Вейля для каждого события на псевдоримановом многообразии.
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.

Подробнее: Алгоритм вычисления собственных значений
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.

Подробнее: Естественное преобразование
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Здесь приведён список векторных дифференциальных операторов в различных системах координат.

Подробнее: Дифференциальные операторы в различных системах координат
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Ортогона́льность (от греч. ὀρθογώνιος «прямоугольный» ← ὀρθός «прямой; правильный» + γωνία «угол») — понятие, являющееся обобщением перпендикулярности для линейных пространств с введённым скалярным произведением.
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Кратномасштабный анализ (КМА) является инструментом построения базисов вейвлетов. Он был разработан в 1988/89 гг. Малла и И. Мейром. Идея кратномасштабного анализа заключается в том, что разложение сигнала производится по ортогональному базису, образованному сдвигами и кратномасштабными копиями вейвлетной функции. Свертка сигнала с вейвлетами позволяет выделить характерные особенности сигнала в области локализации этих вейвлетов.
В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями.
Опера́тор (позднелат. operator — работник, исполнитель, от operor — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения...
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.

Подробнее: Когерентный пучок
Особенность, или сингулярность в математике — это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка, в которой функция имеет разрыв или недифференцируема).
Все физические явления могут быть описаны в разных пространствах: координатном, импульсном, фазовом и др. Описания математически эквивалентны, однако различаются сложностью и интуитивностью описания. В большинстве случаев, координатное пространство является интуитивно понятным и наиболее лёгким для понимания процесса, в нём протекающего, однако, в физике твёрдого тела в общем случае удобнее использовать импульсное описание.

Подробнее: Координатное пространство
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я