Связанные понятия
Стати́стика — отрасль знаний, наука, в которой излагаются общие вопросы сбора, измерения, мониторинга и анализа массовых статистических (количественных или качественных) данных; изучение количественной стороны массовых общественных явлений в числовой форме.
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения.
Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...
Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой форме.
Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.
Латентно-семантический анализ (ЛСА) (англ. Latent semantic analysis, LSA) — это метод обработки информации на естественном языке, анализирующий взаимосвязь между библиотекой документов и терминами, в них встречающимися, и выявляющий характерные факторы (тематики), присущие всем документам и терминам.
Тематическое моделирование — способ построения модели коллекции текстовых документов, которая определяет, к каким темам относится каждый из документов.
Стохастичность (др.-греч. στόχος — цель, предположение) означает случайность. Случайный (стохастический) процесс — это процесс, поведение которого не является детерминированным, и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу и Э. Нельсону, любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет случайным процессом (иными словами, все процессы...
Ме́тод вы́борочных обсле́дований — способ определения свойств группы объектов (генеральной совокупности) на основании статистического исследования её части (выборки).
Статистическое модели́рование — исследование объектов познания на их статистических моделях. «Статистические модели необходимы для теоретического изучения влияния флуктуаций, шумов и т.п. на процессы. При учёте случайных процессов движение системы будет подчиняться уже не динамическим законам, а законам статистики. В соответствии с этим могут быть поставлены вопросы о вероятности того или иного движения, о наиболее вероятных движениях и о других вероятностных характеристиках поведения системы».Оценка...
Структурное прогнозирование или структурное обучение является собирательным термином для техник обучения машин с учителем, которые вовлекают предвидение структурных объектов, а не скалярных дискретных или вещественных значений.
Эконометрика — наука, изучающая количественные и качественные экономические взаимосвязи с помощью математических и статистических методов и моделей. Современное определение предмета эконометрики было выработано в уставе Эконометрического общества, которое главными целями назвало использование статистики и математики для развития экономической теории. Теоретическая эконометрика рассматривает статистические свойства оценок и испытаний, в то время как прикладная эконометрика занимается применением эконометрических...
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Теория вычислительного обучения (англ. computational learning theory, или просто теория обучения), это подобласть теории искусственного интеллекта, посвящённая разработке и анализу алгоритмов обучения машин.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Проблема Гальтона , названная в честь сэра Фрэнсиса Гальтона, представляет собой проблему выведения заключений из кросс-культурных данных на основании статистического феномена, известного на сегодняшний день как сетевая автокорреляция. В настоящее время проблема признается проблемой общего характера, которая применяется ко всем неэкспериментальным исследованиям, а также к экспериментальному проектированию. Ее можно наиболее просто описать как проблему внешних зависимостей при проведении статистических...
Квантовое машинное обучение — раздел науки на стыке квантовой физики и информатики, в котором разрабатываются и изучаются методы машинного обучения, способные эффективно задействовать параллелизм квантовых компьютеров.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.
Подробнее: Снижение размерности
Алгоритмическая теория информации — это область информатики, которая пытается уловить суть сложности, используя инструменты из теоретической информатики. Главная идея — это определить сложность (или описательную сложность, колмогоровскую сложность, сложность Колмогорова-Хайтина) строки как длину кратчайшей программы, которая выводит заданную строку. Строки, которые могут выводиться короткими программами, рассматриваются как не очень сложные. Эта нотация удивительно глубока и может быть использована...
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Расчёт надёжности — процедура определения значений показателей надежности объекта с использованием методов, основанных на их вычислении по справочным данным о надежности элементов объекта, по данным о надежности объектов-аналогов, данным о свойствах материалов и другой информации, имеющейся к моменту расчета.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Метод группового учёта аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Гомотопическая теория типов (HoTT, от англ. homotopy type theory) — математическая теория, особый вариант теории типов, снабжённый понятиями из теории категорий, алгебраической топологии, гомологической алгебры; базируется на взаимосвязи между понятиями о гомотопическом типе пространства, высших категориях и типах в логике и языках программирования.
История теории вероятностей отмечена многими уникальными особенностями. Прежде всего, в отличие от появившихся примерно в то же время других разделов математики (например, математического анализа или аналитической геометрии), у теории вероятностей по существу не было античных или средневековых предшественников, она целиком — создание Нового времени. Долгое время теория вероятностей считалась чисто опытной наукой и «не совсем математикой», её строгое обоснование было разработано только в 1929 году...
Тестирование чёрного ящика или поведенческое тестирование — стратегия (метод) тестирования функционального поведения объекта (программы, системы) с точки зрения внешнего мира, при котором не используется знание о внутреннем устройстве тестируемого объекта. Под стратегией понимаются систематические методы отбора и создания тестов для тестового набора. Стратегия поведенческого теста исходит из технических требований и их спецификаций.
Прикладные исследования — научные исследования, направленные на практическое решение технических и социальных проблем.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Визуализация данных — это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению. Визуализация данных находит широкое применение в научных и статистических исследованиях (в частности, в прогнозировании, интеллектуальном анализе данных, бизнес-анализе), в педагогическом дизайне для обучения и тестирования, в новостных сводках и аналитических обзорах. Визуализация данных связана с визуализацией информации, инфографикой, визуализацией научных данных, разведочным...
Модель мозга — любая теоретическая система, которая стремится объяснить физиологические функции мозга с помощью известных законов физики и математики, а также известных фактов нейроанатомии и нейрофизиологии . Существуют по меньшей мере два основных положения, играющих фундаментальную роль в теории функционирования мозга, в отношении которых сходится мнение большинства современных теоретиков...
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Иерархическая кластеризация (также графовые алгоритмы кластеризации и иерархический кластерный анализ) — совокупность алгоритмов упорядочивания данных, направленных на создание иерархии (дерева) вложенных кластеров. Выделяют два класса методов иерархической кластеризации...
Моде́ль (фр. modèle от лат. modulus «мера, аналог, образец») — это система, исследование которой служит средством для получения информации о другой системе; представление некоторого реального процесса, устройства или концепции.
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод
Эволюционное моделирование (англ. Evolutionary computation) использует признаки теории Дарвина для построения интеллектуальных систем (методы группового учёта, генетические алгоритмы). Является частью более обширной области искусственного интеллекта — вычислительного интеллекта.
Обучение без учителя (самообучение, спонтанное обучение, англ. Unsupervised learning) — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости...
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных (текстовых корпусах).
Слепая деконволюция — метод восстановления изображения без априорной информации о функции размытия точки оптической системы, которая вносит в регистрируемый полезный сигнал шум, искажения и т. п.