Беспристрастная игра

В теории игр термин беспристрастная игра используется для обозначения математических игр, в которых набор возможных ходов зависит только от текущей позиции, а не от того, кто из игроков сейчас ходит. Выигрыши и проигрыши игроков в беспристрастных играх также должны определяться симметрично.

Как синоним употребляется также термин нейтральная игра.

Беспристрастные игры могут быть проанализированы при помощи Теоремы Шпрага-Гранди.

К беспристрастным играм относятся Ним, Игра Гранди, Игра Баше. А вот шахматы, шашки, го или крестики-нолики не являются беспристрастными, так как каждый игрок использует фигуры своего цвета (формы), поэтому в каждой позиции каждый игрок имеет свой набор возможных ходов.

Математические игры, которые не являются беспристрастными, называются пристрастными играми.

Источник: Википедия

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я