Понятия со словом «ромбоикосододекаэдр»
Ромбоикосододекаэдр — полуправильный многогранник, состоящий из 12 правильных пятиугольников, 30 квадратов и 20 треугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся треугольник, пятиугольник и 2 квадрата.
Связанные понятия
Антипризма — полуправильный многогранник, у которого две параллельные грани (основания) — равные между собой правильные n-угольники, а остальные 2n граней (боковые грани) — правильные треугольники.
Пятиугольная антипризма — это третья в бесконечном ряду антипризм, образованных чётным набором треугольных сторон и закрытых с обеих сторон двумя многоугольниками. Она состоит из двух пятиугольников, связанных друг с другом кольцом из 10 треугольников, что даёт в сумме 12 граней. Таким образом, многогранник является неправильным додекаэдром.
Растянутый кубооктаэдр — это многогранник, построенный как растяжение кубооктаэдра. Он имеет 50 граней: 8 треугольников, 30 квадратов и 12 ромбов. 48 вершин разбиваются на два множества по 24 вершины со слегка различным расстоянием от центра.
Треугольная бипирамида — это вид шестигранника, первый многогранник в бесконечной последовательности гранетранзитивных бипирамид. Многогранник двойственен треугольной призме.
Трапецоэдр (дельтоэдр, антитегум) — это двойственный антипризме многогранник. Если у исходной антипризмы основания — n-угольники, то у соответствующего ей трапецоэдра есть 2n граней, имеющих форму дельтоида.
Пра́вильный икоса́эдр (от др.-греч. εἴκοσι «двадцать»; ἕδρον «сиденье», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Многогранник Кли выпуклого многогранника P в пространстве любой размерности — это другой многогранник PK, образованный заменой каждой фасеты многогранника P невысокой пирамидой. Многогранники названы по имени американского математика Виктора Кли (Victor Klee)
Усечённый тетра́эдр — полуправильный многогранник, получающийся из тетраэдра удваиванием количества сторон у граней, и на месте вершин создаются новые грани.
Фаска или усечение рёбер в геометрии — это топологическая операция, которая преобразует многогранник в другой многогранник. Операция подобна растяжению, передвигающему грани, удаляя их от центра. Для трёхмерных многогранников операция фаски добавляет новую шестиугольную грань вместо каждого исходного ребра.