Связанные понятия
Орбитальный резонанс в небесной механике — ситуация, при которой периоды обращения двух (или более) небесных тел соотносятся как небольшие натуральные числа. В результате эти тела периодически сближаются, находясь в определённых точках своих орбит. Возникающие вследствие этого регулярные изменения силы гравитационного взаимодействия этих тел могут стабилизировать их орбиты.
Мерку́рий — ближайшая к Солнцу планета Солнечной системы, наименьшая из планет земной группы. Названа в честь древнеримского бога торговли — быстрого Меркурия, поскольку она движется по небесной сфере быстрее других планет.
Ура́н — планета Солнечной системы, седьмая по удалённости от Солнца, третья по диаметру и четвёртая по массе. Была открыта в 1781 году английским астрономом Уильямом Гершелем и названа в честь греческого бога неба Урана.
Непту́н — восьмая и самая дальняя от Земли планета Солнечной системы. Нептун также является четвёртой по диаметру и третьей по массе планетой. Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше земных.
Троянские астероиды Юпитера — это две крупные группы астероидов, движущихся вокруг Солнца почти в окрестностях точек Лагранжа L4 и L5 Юпитера в орбитальном резонансе 1:1. Эти астероиды называют по именам персонажей Троянской войны, описанных в Илиаде.
Упоминания в литературе
Другие спутники, в том числе и сопоставимые по размерам с внутренними планетами и подверженные динамичным геологическим процессам, образовались не столько из остатков пыли и газа, сколько из осколков, появившихся в процессе формирования других планет. Наиболее активным небесным телом во всей Солнечной системе является спутник
Юпитера Ио, чья орбита настолько близка к газовому гиганту, что полный его оборот вокруг Юпитера занимает всего 41 час. Мощные приливные силы постоянно воздействуют на этот спутник диаметром 3643 км, пробуждая примерно полдюжины вулканов, которые выбрасывают гигантские плюмы высотой в сотни километров – уникальное явление в Солнечной системе. Не меньший интерес представляют Европа и Ганимед, крупные спутники размером примерно с Меркурий, состоящие из воды и горных пород – примерно в равных пропорциях. Оба эти спутника разогреты изнутри под влиянием постоянно действующих приливных сил Юпитера. Почти всю их поверхность составляют покрытые льдом океаны, что зафиксировано исследователями НАСА в процессе поиска возможного существования жизни на других планетах.
«Модель из Ниццы» предсказывает, что Нептун до момента поздней тяжелой бомбардировки с большой вероятностью был ближе к Солнцу, чем Уран, что согласуется и с большей массой Нептуна. Предсказываемые близкие прохождения планет-гигантов объясняют происхождение нерегулярных спутников – это были пролетавшие мимо планетезимали, которые были захвачены на орбиты спутников при прохождении около двух планет. Еще одна странная деталь Солнечной системы, получающая объяснение в рамках этой модели, – астероиды-троянцы. Это мелкие объекты, которые движутся по орбите
Юпитера на 60 градусов окружности впереди и позади планеты, в так называемых Лагранжевых точках L4 и L5. В настоящее время они находятся в устойчивом равновесии: троянцы не могут покинуть свои орбиты под воздействием других планет, но и новые тела не могут попасть в их ряды. Однако в момент резонанса 1:2 Сатурна и Юпитера объекты в точках L4 и L5 были неустойчивы. Мигрирующие планетезимали могли входить и выходить в эти точки, но после выхода Юпитера из резонанса с Сатурном оставшиеся астероиды были заперты там на миллиарды лет.
Наши самые большие оптические телескопы недостаточно мощны, чтобы обнаружить, есть ли какие-нибудь планеты вокруг альфы Центавра, ближайшей к нам звезды, находящейся на расстоянии четырех световых лет. До недавних пор такое обнаружение казалось невозможным. Радиоастрономы наблюдали возмущения в сигналах, поступавших с Солнца, когда планеты
Юпитер и Сатурн занимали определенные положения, и предположили, что их сила притяжения периодически оказывает большее воздействие на солнечную радиацию. Периодические возмущения в излучениях с других непарных звезд наводили на мысль о схожем явлении, и есть основания быть уверенными в том, что звезда Барнарда, находящаяся от нас в шести световых годах, имеет невидимого двойника, а у тау Кита, удаленной от нас на одиннадцать световых лет, также есть планеты. Русские астрономы полагают, что лазерные вспышки со звезды 61 Лебедя в 1894 и 1908 гг. были ответами на явный сигнал с Земли – извержение вулкана Кракатау в 1883 г. При образовании звезды вращаются быстро, затем в какой-то момент их вращение замедляется, а их энергию выкачивают сопутствующие им планеты. Наблюдения наводят на мысль о том, что, чтобы узнать, были ли у звезды свои планеты, достаточно лишь измерить скорость ее вращения. Неустойчивость в движении звезды в настоящее время можно считать доказательством не обнаруженных при ней планет.
24 августа 2006 г. в Праге после ожесточенных споров Генеральная ассамблея Международного астрономического союза (МАС) проголосовала за новое определение, которое автоматически лишило Плутон звания планеты, присвоенного ему тем же МАС в 1930 г. Согласно новому определению, планетой Солнечной системы считается тело: 1) вращающееся по орбите вокруг Солнца; 2) имеющее достаточную массу для того, чтобы сформировать под действием собственного гравитационного поля гидростатически равновесную фигуру (близкую к сферической); 3) «расчистившее» область в районе своей орбиты от более мелких объектов. Таким образом, в Солнечной системе стало всего восемь планет: Меркурий, Венера, Земля, Марс,
Юпитер , Сатурн, Уран и Нептун. Тела, не удовлетворяющие третьему условию, но не являющиеся спутниками, теперь будут называть карликовыми планетами – к ним относят, например, Плутон и Цереру. Все остальные тела, кроме спутников, называются малыми телами Солнечной системы. Это большинство астероидов, комет и объектов пояса Койпера, некоторые из них являются кандидатами в карликовые планеты.
Сатурн знаменит своими кольцами, образованными из камня и льда, а также необычным полярным сиянием. Планета, названная в честь римского бога плодородия, вторая по величине в Солнечной системе после
Юпитера , также относится к классификации «газовый гигант» и больше Земли в 10 раз. Поскольку поверхность Сатурна почти полностью из водорода, у него нет твердой поверхности, а внешняя оболочка планеты состоит из облаков, газа и жидких металлов. Несмотря на то, что Сатурн меньше Юпитера всего на 19 процентов, плотность планеты с кольцами меньше плотности Земли, однако это позволяет Сатурну весить больше нашей планеты в 94 раза.
Связанные понятия (продолжение)
Периге́лий (др.-греч. περί «пери» — вокруг, около, возле, др.-греч. ἥλιος «гелиос» — Солнце) — ближайшая к Солнцу точка орбиты планеты или иного небесного тела Солнечной системы.
Вене́ра — вторая по удалённости от Солнца планета Солнечной системы, наряду с Меркурием, Землёй и Марсом принадлежащая к семейству планет земной группы. Названа в честь древнеримской богини любви Венеры. По ряду характеристик, например, по массе и размерам, Венера считается «сестрой» Земли. Венерианский год составляет 224,7 земных суток. Она имеет самый длинный период вращения вокруг своей оси (243 земных суток) среди всех планет Солнечной системы и вращается в направлении, противоположном направлению...
Сату́рн — шестая планета от Солнца и вторая по размерам планета в Солнечной системе после Юпитера. Сатурн, а также Юпитер, Уран и Нептун, классифицируются как газовые гиганты. Сатурн назван в честь римского бога земледелия. Символ Сатурна — серп (Юникод: ♄).
Пояс Ко́йпера (иногда также называемый пояс Э́джворта — Койпера) — область Солнечной системы от орбиты Нептуна (30 а. е. от Солнца) до расстояния около 55 а. е. от Солнца. Хотя пояс Койпера похож на пояс астероидов, он примерно в 20 раз шире и в 20—200 раз массивнее последнего. Как и пояс астероидов, он состоит в основном из малых тел, то есть материала, оставшегося после формирования Солнечной системы. В отличие от объектов пояса астероидов, которые в основном состоят из горных пород и металлов...
Карликовая планета , согласно определению XXVI Ассамблеи Международного астрономического союза в 2006 году — это небесное тело, которое...
Щели Кирквуда — это определённые области в поясе астероидов, которые создаются резонансным влиянием Юпитера. В этих областях астероиды практически отсутствуют.
Период вращения космического объекта — время, которое требуется объекту для совершения полного оборота вокруг своей оси относительно звёзд.
Кента́вры — группа астероидов, находящихся между орбитами Юпитера и Нептуна, переходная по свойствам между астероидами главного пояса и объектами пояса Койпера (также по некоторым свойствам похожи на кометы). Они имеют нестабильные, порой сильно вытянутые орбиты, поскольку пересекают орбиты одного или сразу нескольких планет-гигантов. Вследствие этого динамическая жизнь кентавров составляет всего несколько миллионов лет, поскольку крупные планеты просто выталкивают эти объекты со своих орбит гравитацией...
Эри́да (136199 Eris по каталогу ЦМП) — вторая по размеру после Плутона, самая массивная и наиболее далёкая от Солнца карликовая планета Солнечной системы. Ранее была известна под названием Зена (Ксена). Относится к транснептуновым объектам, плутоидам. До XXVI Ассамблеи Международного астрономического союза Эрида претендовала на статус десятой планеты. Однако 24 августа 2006 года Международный астрономический союз утвердил определение классической планеты, которому Эрида, как и Плутон, не соответствует...
Атоны — группа околоземных астероидов, чьи орбиты пересекают земную орбиту с внутренней стороны (их расстояние от Солнца в афелии больше перигелийного расстояния Земли, Q > 0,983 a.e., но большая полуось ещё меньше земной a < 1 a.e.). Таким образом, хотя их орбиты в целом по-прежнему находятся внутри земной орбиты, они уже начинают пересекать её в области перигелия Земли. Согласно сложившейся традиции эта группа астероидов была названа в честь своего первого открытого представителя, — астероида...
Цере́ра (1 Ceres по каталогу ЦМП) — ближайшая к Солнцу и наименьшая среди известных карликовых планет Солнечной системы. Расположена в поясе астероидов. Церера была открыта в 1801 году итальянским астрономом Джузеппе Пиацци в Палермской астрономической обсерватории. Некоторое время Церера рассматривалась как полноценная планета Солнечной системы; в 1802 году она была классифицирована как астероид, но продолжала считаться планетой ещё несколько десятилетий, а по результатам уточнения понятия «планета...
Планеты-гиганты — четыре планеты Солнечной системы (Юпитер, Сатурн, Уран и Нептун) расположенные за пределами пояса астероидов. Эти планеты, имеющие ряд сходных физических характеристик, также называют внешними планетами.
Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг Солнца. Она сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад.
Коме́та (от др.-греч. κομήτης, komḗtēs — волосатый, косматый) — небольшое небесное тело. Буквально оно означает "с длинными волосами". Название было дано из-за строения этого небесного тела. Комета имеет "голову" и длинный "хвост"— своего рода "волосы". Было время, когда появление комет вызывало у людей ужас. Они считали кометы предвестником чумы, войн, смерти.
Афе́лий или апоге́лий (др.-греч. από «апо» — из, от (приставка, означающая отрицание и отсутствие чего-либо), др.-греч. ηλιος «гелиос» — Солнце) — наиболее удалённая от Солнца точка орбиты планеты или иного небесного тела Солнечной системы, а также расстояние от этой точки до Солнца.
Ретроградное движение — движение в направлении, противоположном направлению прямого движения. Этот термин может относиться к направлению вращения одного тела вокруг другого по орбите или к вращению тела вокруг своей оси, а также к другим орбитальным параметрам, таким как прецессия и нутация. Для планетных систем ретроградное движение обычно означает движение, которое противоположно вращению главного тела, то есть объекту, который является центром системы.
Атиры — группа околоземных астероидов, чьи орбиты полностью находятся внутри орбиты Земли (их расстояние от Солнца в афелии меньше перигелийного расстояния Земли, Q < 0,983 a. e.). Таким образом, даже в самой удалённой точке своей орбиты эти астероиды находятся ближе к Солнцу, чем Земля в самой близкой точке своей орбиты. Согласно сложившейся традиции эта группа астероидов была названа в честь своего первого открытого представителя, — астероида (163693) Атира, который был обнаружен в начале февраля...
Квазиспу́тник (от лат. quas(i) «наподобие», «нечто вроде») — объект, находящийся в орбитальном резонансе 1:1 с планетой, что позволяет ему оставаться вблизи планеты на протяжении многих орбитальных периодов.
Покрытие звёзд астероидом — это астрономическое явление, в ходе которого источник света, чаще всего звезда, покрывается астероидом в процессе его перемещения по небесной сфере. Множество таких явлений происходит по всему миру каждый день. В среднем, каждую ночь в любой точке Земли можно наблюдать по одному покрытию звезды ярче 13 звёздной величины астероидом, занесённым уже в каталог.
Противостояние (оппозиция) — такое положение небесного тела Солнечной системы, в котором разница эклиптических долгот его и Солнца равна 180°. Таким образом, это тело находится примерно на продолжении линии «Солнце — Земля» и видно с Земли примерно в противоположном Солнцу направлении. Противостояние возможно только для верхних планет и других тел, находящихся дальше от Солнца, чем Земля.
Двойной астероид — система из двух астероидов, гравитационно связанных друг с другом, вращающихся вокруг общего центра масс, наподобие двойной системы звёзд. Первым обнаруженным бинарным астероидом стал астероид (243) Ида, двойственность которого была установлена во время пролёта мимо него космического аппарата Галилео в августе 1993 года. С тех пор в поясе астероидов было открыто множество двойных систем.
Плане́та (греч. πλανήτης, альтернати́вная фо́рма др.-греч. πλάνης — «странник») — небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей.
Аполлоны — группа околоземных астероидов, чьи орбиты пересекают земную орбиту с внешней стороны (их расстояние от Солнца в перигелии меньше афелийного расстояния Земли, q < 1,017 a. e., но большая полуось уже больше земной, a > 1 a. e.). Таким образом, хотя их орбиты в целом уже находятся за пределами земной орбиты, они ещё продолжают пересекать её в области афелия Земли. Согласно сложившейся традиции эта группа астероидов была названа в честь своего первого открытого представителя — астероида...
Сидери́ческий пери́од обраще́ния (от лат. sidus, звезда; род. падеж sideris) — промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звёзд. Понятие «сидерический период обращения» применяется к обращающимся вокруг Земли телам — Луне (сидерический месяц) и искусственным спутникам, а также к обращающимся вокруг Солнца планетам, кометам и др.
Облако О́орта — гипотетическая сферическая область Солнечной системы, служащая источником долгопериодических комет. Инструментально существование облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование.
Плане́ты земно́й гру́ппы — четыре планеты Солнечной системы: Меркурий, Венера, Земля и Марс. Они расположены во внутренней области Солнечной системы, в отличие от планет-гигантов, расположенных во внешней области. Согласно ряду космогонических теорий, в значительной части внесолнечных планетных систем экзопланеты тоже делятся на твердотельные планеты во внутренних областях и газовые планеты — во внешних. По строению и составу к планетам земной группы близки некоторые каменные астероиды, например...
Спутник астероида — астероид, естественный спутник, обращающийся по орбите вокруг другого астероида. Спутник и астероид представляют собой систему, поддерживающуюся гравитацией обоих объектов. Астероидную систему, в которой размеры спутника сопоставимы c размером астероида, называют двойным астероидом. Также известны системы из трёх компонентов (например, крупные астероиды (45) Евгения и (87) Сильвия, астероид-аполлон (136617) 1994 CC, крупный транснептуновый объект (47171) 1999 TC36 и т. д.).
Большая полуось — один из основных геометрических параметров объектов, образованных посредством конического сечения.
Звёздная величина ́ (блеск) — безразмерная числовая характеристика яркости объекта, обозначаемая буквой m (от лат. magnitudo «величина, размер»). Обычно понятие применяется к небесным светилам. Звёздная величина характеризует поток энергии от рассматриваемого светила (энергию всех фотонов в секунду) на единицу площади. Таким образом, видимая звёздная величина зависит и от физических характеристик самого объекта (то есть светимости), и от расстояния до него. Чем меньше значение звёздной величины, тем...
Точки Лагра́нжа , точки либра́ции (лат. librātiō — раскачивание) или L-точки — точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействия никаких других сил, кроме гравитационных, со стороны двух первых тел, может оставаться неподвижным относительно этих тел.
В данном списке представлены группы и классы различных малых тел Солнечной системы, которые объединены в них на основании орбитальных (степень удалённости от Солнца, взаиморасположение с планетами) и физических параметров. Группы эти, как правило, получают название в честь своего первого открытого или самого крупного представителя (которым, зачастую, является одно и то же тело) или же, исходя из места расположения орбит представителей группы.
Подробнее: Классификации малых планет
Дуга наблюдений (англ. Observation arc) — промежуток времени между первым и наиболее недавним наблюдениями, прослеживающими траекторию движения объекта. Обычно дуга наблюдений указывается в днях или годах. Термин наиболее часто употребляется при описании обнаружения и отслеживания астероидов и комет.
Троянские астероиды Нептуна (англ. Neptune trojan) — это группа астероидов пояса Койпера, движущаяся вокруг Солнца по орбите Нептуна в 60°, впереди — точка L4 или позади — точка L5 него, находясь в одной из двух точек Лагранжа орбиты Нептуна.
Кривая блеска — функция изменения блеска астрономического объекта во времени. Данное понятие применимо как к самосветящимся объектам (звёздам), так и к объектам, отражающим свет близлежащего светила (Солнца, звезды). В роли таких объектов могут выступать планеты, их спутники, астероиды и др.
Спу́тник — небесное тело, обращающееся по определённой траектории (орбите) вокруг другого объекта в космическом пространстве под действием гравитации. Различают искусственные и естественные спутники.
Марс — четвёртая по удалённости от Солнца и седьмая по размерам планета Солнечной системы; масса планеты составляет 10,7 % массы Земли. Названа в честь Марса — древнеримского бога войны, соответствующего древнегреческому Аресу. Иногда Марс называют «красной планетой» из-за красноватого оттенка поверхности, придаваемого ей минералом маггемитом — γ-оксидом железа(III).
Земля-кроссеры — это околоземные астероиды, орбиты которых пересекают орбиту Земли. Перигелий орбиты у таких астероидов располагается внутри орбиты Земли, то есть он меньше афелия Земли (1,017 а. е.), но больше её перигелия (0,983 а. е.).
Подробнее: Список астероидов, пересекающих орбиту Земли
Околоземный объект — объект Солнечной системы, орбита которого проходит в непосредственной близости с Землёй. Перигей всех околоземных объектов составляет менее 1,3 а.е.
Центр малых планет (ЦМП; англ. Minor Planet Center, MPC) находится в Смитсоновской астрофизической обсерватории (SAO), которая является частью Гарвард-Смитсоновского центра астрофизики (CfA) совместно с Гарвардской университетской обсерваторией (HCO).
Ганиме́д (др.-греч. Γανυμήδης) — один из галилеевых спутников Юпитера, седьмой по расстоянию от него среди всех его спутников и крупнейший спутник в Солнечной системе. Его диаметр равен 5268 километрам, что на 2 % больше, чем у Титана (второго по величине спутника в Солнечной системе) и на 8 % больше, чем у Меркурия. При этом масса Ганимеда составляет всего 45 % массы Меркурия, но среди спутников планет она рекордно велика. Луну Ганимед превышает по массе в 2,02 раза. Совершая облёт орбиты примерно...
Экли́птика (от лат. (linea) ecliptica, от др.-греч. ἔκλειψις — затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. Соответственно плоскость эклиптики — плоскость обращения Земли вокруг Солнца (земной орбиты). Современное, более точное определение эклиптики — сечение небесной сферы плоскостью орбиты барицентра системы Земля — Луна.
Юлиа́нский год (символ: a) — единица измерения времени. Один юлианский год равен 365,25 юлианским дням по 86 400 секунд СИ каждый, то есть в точности 31 557 600 секунд. Это средняя продолжительность года в юлианском календаре, использовавшемся в Европе в античности и средневековье. Юлианские годы используются в астрономии для выражения периодов обращения вокруг Солнца каких-либо объектов Солнечной системы (астероидов, комет и т. п.), в геохронологии для измерения больших промежутков времени, в ядерной...
Харо́н (от греч. Χάρων; также (134340) Плутон I) — открытый в 1978 году спутник Плутона (в другой интерпретации — меньший компонент двойной планетной системы Плутон—Харон). С открытием в 2005 году двух других спутников — Гидры и Никты — Харон стали также именовать как Плутон I. Назван в честь персонажа древнегреческой мифологии Харона — перевозчика душ мёртвых через реку Стикс. В июле 2015 года американский зонд «Новые горизонты» впервые в истории достиг Плутона и Харона и исследовал их с пролётной...
Астеро́ид (распространённый до 2006 года синоним — малая планета) — относительно небольшое небесное тело Солнечной системы, движущееся по орбите вокруг Солнца. Астероиды значительно уступают по массе и размерам планетам, имеют неправильную форму и не имеют атмосферы, хотя при этом и у них могут быть спутники.
Упоминания в литературе (продолжение)
За исключением Марса, эти цифры показывают, что обращения планет наблюдались довольно внимательно, и Евдокс, возможно, даже имел несколько более точные данные, так как Папирус Евдокса приводит синодический период обращения Меркурия, равный 116 дням, и это на удивление точное значение. Скорее всего, Евдокс получил его во время пребывания в Египте[88]. Если бы мы только знали наклонение, на которое опираются размеры гиппопеды, то мы смогли бы полностью восстановить все планетные теории Евдокса. Поскольку основной целью системы, разумеется, было объяснение ретроградных движений светил, Скиапарелли предположил для трех внешних планет, что величина наклонений выбрана таким образом, чтобы согласовать ретроградные дуги с наблюдаемыми. Ретроградная дуга Сатурна составляет около 6°, и с зодиакальным периодом 30 лет, синодическим периодом 13 месяцев, а также наклонением 6° между осями третьей и четвертой сферы длина гиппопеды становится 12°, а половина ее ширины, то есть наибольшее отклонение планеты от эклиптики, оказывается 9°, что было незаметно для наблюдения в те дни. Таким образом мы получаем просто ретроградное движение по долготе около 6° между двумя неподвижными точками. Точно так же, если допустить для
Юпитера наклонение 13°, то длина гиппопеды становится 26°, а половина ее ширины – 44°, и с периодами 12 лет и 13 месяцев соответственно это дает ретроградную дугу около 8°. Наибольшее расстояние от эклиптики при движении по этой дуге – 44?, вероятно, в те времена было практически незаметно. Следовательно, для этих двух планет Евдокс нашел отличное решение задачи, предложенной Платоном, даже если предположить, что он знал точные длины ретроградных дуг.
По их мнению, своего рода «космическим инкубатором» мог быть пояс астероидов, расположенный между орбитами Марса и
Юпитера . Он находился на достаточном расстоянии от формировавшихся планет, процессы на которых могли создавать изменчивую среду, меняя условия для формирования простых молекул.
Во всей «астероидной проблеме» основным вопросом остается: смогут ли астрономы на основе современных наблюдений достаточно точно и своевременно предсказывать появление космической метеоритной угрозы? Между тем электронное моделирование движения кометных ядер, периодически появляющихся из далеких окрестностей Солнечной системы, показывает, что их траектории достаточно хаотичны. Чаще всего блуждания комет между газовыми гигантами заканчиваются распадом под действием сильнейших сил тяготения и выпадением на
Юпитер .
Прежде всего обращают на себя внимание крайне малые размеры области, где сосредоточена первопричина самого феномена ядра галактики. Так, например, у нашей Галактики размеры самого центрального источника радиоизлучения не превосходят нескольких тысячных парсека. Возможно, что эти размеры не превышают радиус орбиты
Юпитера , т. е. 1014 см. Несомненно, что наблюдаемое радиоизлучение вызывается потоками электронов очень высоких энергий, движущихся в магнитном поле. Из наблюдаемой мощности этого излучения следует, что ежесекундно в этой малой области выделяется до 1040 эргов энергии в форме космических лучей. Это в миллион раз больше мощности солнечного излучения! Откуда же берется эта энергия, что это за могучий ускоритель там работает?
«На орбите
Юпитера , впереди него на 60 градусов, движется красное облако тел. Это так называемые греки. На 60 градусов отставая от Юпитера, двигаются троянцы. То есть астрономы договорились многочисленные объекты этой части пояса астероидов называть по именам героев Троянской войны трех с половиной тысячелетней давности. И в Пулковской обсерватории, в том числе и при моем участии, изучался еще один очень интересный класс объектов – астероиды семейства Гильды. Этот класс опасен тем, что с помощью трансмиссии, которая возникает из-за тяготения Солнца и Юпитера, астероиды перебрасывает в окрестности Земли. Несколько лет назад буквально перед встречей с Землей удалось зафиксировать несколько десятков кадров на матрицу нашего Пулковского телескопа. Наши наблюдения вместе с наблюдениями, сделанными в других странах, помогли точно показать, куда он упадет».
Подобное явление характерно для всех планет Солнечной системы. Оно обусловлено притяжением ближайших небесных тел. В случае с Меркурием его «тянут» к себе Венера, Земля, Марс и
Юпитер . Точка перигелия медленно вращается вокруг Солнца (сегодня известно, что она совершает полный оборот за 225 с лишним тысяч лет). За одно столетие поворот перигелия составляет 574 угловые секунды (в одном градусе – 3600 угловых секунд). Однако, если учесть влияние известных планет, – а Леверье педантично отметил все положения перигелия, – то эта величина должна быть равна 531 секунде. Странным образом перигелий Меркурия каждые сто лет «убегал» на 43 секунды вперед.
Следующий рисунок сделан Томасом Райтом из Дарема, который в 1750 г. выпустил выдающийся труд под вполне соответствующем названием «Оригинальная теория, или Новая гипотеза о Вселенной». Райт был, кроме прочего, архитектором и чертежником, поэтому на его рисунке Солнечная система и Вселенная за ее пределами впервые представлены в масштабе. Вот Солнце, а вот расстояние до орбиты Меркурия, соотносимое с размерами Солнца. Затем изображены Венера, Земля, Марс,
Юпитер и Сатурн (другие планеты в то время еще не были открыты), а затем – восхитительная попытка – Солнечная система из тех же шести планет, собранных в точку, и розетки орбит открытых к тому времени комет. Дальше ныне известной орбиты Плутона Райт не заглядывал. А затем он изобразил на огромном отдалении ближайшую известную тогда звезду, Сириус, которую он уже не решился окружить розеткой кометных орбит. Однако сходство между нашей системой и другими звездными системами прослеживалось четко.
Он бы легко убедился, однако, что для Луны полученное соотношение, увы, не выполняется, и очень сильно. Скорость Луны в 60 раз меньше, “чем надо”. Поскольку скорость Луны и расстояние до нее были хорошо известны, Галилей подумал бы об ускорении свободного падения g, которое сам измерил. Но измерил-то на поверхности Земли, а не на высоте Луны. Соотношение выполнилось бы, если ускорение свободного падения на высоте Луны в 3600 раз меньше земного. Расстояние до Луны в 60 раз больше радиуса Земли. Напрашивается гипотеза: ускорение свободного падения меняется с удалением от Земли обратно пропорционально квадрату расстояния. Эту гипотезу Галилей мог подтвердить и на спутниках
Юпитера , и на спутниках Солнца – планетах. В результате он получил бы новый закон природы – общий закон свободного падения, определяющий ускорение свободного падения g(R) в точке, удаленной на расстояние R от небесного тела массы M
То, что силы притяжения ведут себя не совсем так, как должны бы в соответствии c принятыми физическими законами, было замечено при отправке к
Юпитеру в конце 1980-х исследовательского аппарата «Галилео». Ученые действовали как обычно – для придания нужной скорости использовали «гравитационный маневр». Зонд дважды приближали к Земле так, чтобы сила гравитации планеты подтолкнула его и придала дополнительное ускорение. Но произошло странное – после маневров скорость «Галилео» оказалась выше рассчитанной. Со следующими тремя аппаратами случилось то же самое, и ученые были в замешательстве, никак не могли объяснить, по каким причинам нарушается привычная схема запуска. Ошибки в расчетах? Сбой в работе техники? Или что за неведомое «нечто» придает зондам дополнительный разгон? В то время об антигравитации среди астрономов еще не говорили, термина «темная энергия» не существовало, как и самой теории. Но и сейчас это явление – загадка для исследователей Вселенной, о нем очень мало известно.
У некоторых из этих приближенных Солнца, удерживаемых им на эллиптических орбитах в силу великого закона тяготения, в свою очередь имеются спутники: у Урана и Сатурна – по восемь, у
Юпитера – четыре, у Нептуна, вероятно, два, у Земли – один; это светило, одно из самых незначительных в Солнечной системе, называется Луной, – и нужен был смелый гений американцев, чтобы возникла мысль о завоевании нашего спутника.
Важными в своем воздействии на живой организм являются такие резонансные положения планет, когда по две или по три планеты выстраиваются на линии, проходящей через Солнце. Такая ситуация повторяется через определенные периоды времени, которые для различного сочетания планет имеют индивидуальные значения. Например, нахождение на одной линии с Солнцем Меркурия, Венеры и Марса наблюдается с периодичностью 19,1 месяца, Марса―Земли―
Юпитера ― 26 месяцев, Юпитера―Земли―Венеры ― 39 месяцев, Юпитера―Земли― Венеры―Марса ― 53 месяца и Венеры―Земли―Марса― Юпитера ― 78 месяцев. Приведенные циклы имеют четкое отражение в земных процессах. В частности, цикл продолжительностью 26 месяцев обнаружен в изменении погодных условиях на Земле. Считается, что расположение Солнца, Луны и других планет в период зачатия определяют костяк и форму тела, умственные задатки, черты характера, продолжительность жизни и указывают на возможные заболевания тех или иных органов.
Мы обязаны кометам в частности метеорными потоками. Фрагменты комет формируют кольца из пород, большая часть которых находится между Марсом и
Юпитером , но далеко не все. Некоторые протянулись вокруг Солнца, постоянно находятся там, и Земле приходится проходить сквозь них во время своего годового пути по орбите. Эти куски космического мусора сгорают в нашей атмосфере – тогда и наблюдается метеорный поток, или звездный дождь. Мы наблюдаем Леониды в период с 14 по 21 ноября, максимум действия этого метеорного потока приходится на 17–18 ноября. Леониды – самый известный метеорный поток. Он известен с древних времен. Самым ранним историческим свидетельством об этом метеорном потоке является его описание, сделанное в 901 году в Александрии. Родоначальницей потока является комета Темпеля – Туттля. Леониды иногда проливаются метеорным дождем, это было в 1901, 1934, 1966 и 1999 годах. В среднем в час бывает не больше 40 метеоров. Метеоры из Леонид очень быстрые и белые. Скорость этих метеоров составляет около 71 км/ч.
Как известно, шарообразность Земли доказана давно. Это подтверждают и космические снимки. Такую же форму имеют все крупные космические тела – планеты. Солнце и другие звезды. Точно установлено, что форма Земли отличается от шара: расстояние от центра Земли до экватора составляет 6 378 км, а от центра до полюсов меньше на 22 км и равно 6 356 км длина окружности Земли 40 тыс. км. Чтобы пройти это расстояние пешком, человеку потребуется 5 лет. Несмотря на свои гигантские размеры, Земля не самая крупная планета Солнечной системы. Самая маленькая планета Меркурий в два с лишним раза меньше, а самая большая
Юпитер – в 11 раз больше ее Земли и ее формы видны на ее уменьшенной модели – шаре, которая называется зеленым глобусом. На его поверхности изображены материки, острова, океаны и моря. Они имеют те же очертания и так же размещены, как и на самой Земле, только уменьшены в несколько миллионов раз.
Древние знали пять «блуждающих звезд» – Меркурий, Венеру, Марс,
Юпитер и Сатурн, легко заметных для невооруженного глаза (впрочем, в наших широтах заметить Меркурий не так уж легко). При точном целеуказании и хороших условиях наблюдения можно заметить и Уран, имеющий блеск 5,5m (хотя до изобретения телескопа и даже в течение двух веков после его изобретения распознать в Уране планету никто не смог). Однако с древности планет насчитывалось семь, поскольку астрономы в старину называли планетами также Луну и Солнце.
Только ли Солнце излучает энергию? Нет, известно, что все планеты солнечной системы, а также и отдаленные звезды излучают те или иные энергии. Например,
Юпитер излучает и короткие, и длинные волны. На интенсивность излучения может оказывать спутник Юпитера – Ио; и точно так же все планеты солнечной системы влияют на излучение Солнца. Отсюда нетрудно вывести всеобщую взаимосвязь, взаимообусловленность тех космических энергий, которые достигают Земли.
Как читатель узнает позже, достаточно сообщить телу секундную скорость около 11 км, чтобы отослать его с земной поверхности в мировое пространство, а при начальной скорости в 17 км/с тело сможет свободно странствовать по планетной системе. Значит, если ничтожная земная пылинка очутится почему-либо за пределами атмосферы, она будет подхвачена там световым давлением и увлечется им в мировое пространство, навсегда покинув породившую ее Землю. Она будет мчаться с возрастающей скоростью все далее и далее к окраинам нашей планетной системы, пересекая орбиты Марса, астероидов,
Юпитера , и через каких-нибудь полторы декады будет уже у крайней границы нашей Солнечной системы.
Расстояние между небесными телами в вашей Солнечной системе настолько точно подобрано, что колоссальные пустоты между ними являются необходимыми условиями для существования жизни на Земле, а расстояние между телами гармонирует в обеспечении безопасности. Возьмём лишь планету
Юпитер – защитник Земли, который оберегает вашу планету от космических тел больших размеров, беря на себя их столкновения, когда они притягиваются небесным светилом Солнцем.
Выделяют планеты янские (Солнце, Марс,
Юпитер , Плутон) и иньские (Луна, Венера, Сатурн, Нептун). Функции первых направлены на внешнее, активное проявление, функции вторых, напротив, связаны с поглощением энергии, поступающей извне, с пассивным проявлением. Планеты, совмещающие свойства тех и других, называются дэнскими (Меркурий, Уран).
12 знаков звездного зодиака, 12 «небесных Домов», 27 «стоянок» Луны (накшатр) и 9 планет (не считая трансурановых, но включая лунные узлы) образуют фундаментальную основу джйотиша, или Ведической астрологии. Девять основных планет – это септенер (7 планет, видимых не вооружённым глазом для наблюдателя с Земли) «блуждающих светил» на звёздном небе: Солнце, Луна, Меркурий, Венера, Марс,
Юпитер и Сатурн, а также Раху и Кету – 2 Лунных узла, расположенных в местах пересечения эклиптики и лунной орбиты, которые, согласно Ведам, являются планетами тонкоматериальной природы. В мифологии Лунные узлы представлены Драконом. Голова Дракона является верхним Северным Узлом, а хвост – нижним Южным. Движение «вверх» или падение «вниз» получило кармическое толкование эволюции или регресса.
Вообще-то, вполне достаточно просто математических доказательств: существуют миллионы галактик, в каждой из них – миллионы звезд, а вокруг многих из этих звезд вращаются планеты. Уже только эти цифры показывают, что отсутствие жизни во Вселенной маловероятно. Но есть и другие доказательства. До сих пор мы обнаружили больше 150 планет, вращающихся вокруг ближайших звезд нашего маленького уголка Млечного пути. Это говорит о том, что только в Млечном пути существует бесчисленное число планет. Возможно, некоторые из них похожи на Землю – как минимум они такого же размера, хотя почти все обнаруженные нами планеты – газообразные гиганты, и жизнь на них – как на
Юпитере или Сатурне – вряд ли возможна.
Нидерландский механик, физик и математик Христиан Гюйгенс, имеющий также большие заслуги в области астрономии, был сыном своего времени, а потому искренне верил в целесообразность всех деталей мирового устройства как Божьего творения. Главное назначение Луны, считали современники Гюйгенса, состоит в том, чтобы обеспечивать необходимые морякам приливы и отливы. Поэтому совершенно очевидно, полагал Гюйгенс, что наличие у
Юпитера четырех (открытых Галилеем) спутников свидетельствует о широком распространении мореплавания на этой планете. Но корабль того времени был немыслим без большого количества парусов и канатов, основным сырьем для производства которых являлась пенька – грубое лубяное волокно из стеблей конопли. А значит, рассуждал Гюйгенс, на Юпитере обязательно имеются огромные плантации этого растения.
На кометы очень действуют силы притяжения планет. Некоторые кометы сходят со своих орбит под влиянием этих сил, их орбита становится короче.
Юпитер , например, собрал большое количество комет, каждая из которых вращается вокруг Солнца с периодом обращения 6 лет. Кометы, которые появляются с определенной регулярностью, называются периодическими кометами.
Да и нет никаких научных оснований к тому, чтобы со дна колодцев, даже самых глубоких, были видны днем звезды. С поверхности земли их не видно, потому что частицы земной атмосферы рассеивают солнечные лучи, благодаря чему образуется сплошная сияющая солнечная завеса. Она существует, конечно, и для наблюдателя, смотрящего на небо со дна колодца. Единственное, что можно увидеть оттуда благодаря отсутствию бокового освещения и защите глаз от ослепляющего действия солнца, это две планеты – Венеру и
Юпитер , которые сияют ярче звезд. Но они бывают иногда видны днем и непосредственно с земли. Не это ли послужило поводом к зарождению этой легенды?
Чем выше этаж, тем больше в литературе свободных, не занятых пока мест. Пусть, например, выбран космический скафандр. Первый этаж – один скафандр, таких идей сколько угодно. Второй этаж – много скафандров, это поселения в космосе. Третий этаж – в космосе без скафандра, это кибергизация человека. Четвертый этаж – не нужно ограждать человека от космоса, например, разрушить
Юпитер в газ, пригодный для дыхания, распределить его равномерно по межпланетному пространству. По-видимому, метод наиболее эффективен для неживых объектов.
Для умеренного и полярного поясов мы можем назвать его весной, хотя он имеет столько же прав именоваться и осенью. Дни всегда и всюду будут равны ночи, как теперь бывают только в 20-х числах марта и сентября. (В таком примерно положении находится планета
Юпитер ; ее ось вращения почти перпендикулярна к плоскости движения ее вокруг Солнца.)
Наличие кольца у планеты
Юпитер предсказал в 1960 году учёный Сергей Константинович Всехсвятский, а в 1979 году его сфотографировала американская станция «Вояджер». Оно очень тонкое, состоит из мелких камней и пыли и обращено к Земле ребром, поэтому с нашей планеты его не видно.