Связанные понятия
Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг Солнца. Она сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад.
Астрономический объект или Небесное тело — естественное физическое тело, ассоциация, или структура, которую современная наука определяет как расположенную в наблюдаемой Вселенной. Термин «астрономический объект» нередко используется наравне с термином «тело». Как правило, «небесное тело» представляет собой обособленную, единую, связанную гравитацией (а иногда и электромагнетизмом) структуру. Например: астероиды, спутники, планеты и звёзды. «Астрономические объекты» — гравитационно связанные структуры...
Земля ́ — третья по удалённости от Солнца планета Солнечной системы. Самая плотная, пятая по диаметру и массе среди всех планет и крупнейшая среди планет земной группы, в которую входят также Меркурий, Венера и Марс.
Планеты-гиганты — четыре планеты Солнечной системы (Юпитер, Сатурн, Уран и Нептун) расположенные за пределами пояса астероидов. Эти планеты, имеющие ряд сходных физических характеристик, также называют внешними планетами.
Коме́та (от др.-греч. κομήτης, komḗtēs — волосатый, косматый) — небольшое небесное тело. Буквально оно означает "с длинными волосами". Название было дано из-за строения этого небесного тела. Комета имеет "голову" и длинный "хвост"— своего рода "волосы". Было время, когда появление комет вызывало у людей ужас. Они считали кометы предвестником чумы, войн, смерти.
Упоминания в литературе
Тем временем по результатам наблюдений местной планетной системы Наблюдатель быстро накапливал знания о ее строении. Четыре ближайшие к звезде
планеты были намного меньше по размеру, но намного плотнее четырех более удаленных. Спектральный анализ четырех удаленных планет показал, что они состоят в основном из легких газов, однако благодаря их огромным размерам они были во много раз более массивными, чем четыре более близкие к звезде. Детальный спектральный анализ излучения самой звезды HZW-1020-3964-2904-3845 (QSL) позволил обнаружить присутствие на ней не только ядер водорода и гелия, но и углерода и других более тяжелых элементов. По их соотношению Наблюдатель оценил возраст местного светила в 7 миллиардов лет. Теперь он знал, и как 7 миллиардов лет назад возникла эта звезда и ее планетная система, и что их ждет в будущем. Результаты наблюдений позволяли однозначно отнести ее к одному из детально описанных в каталоге типов звездно-планетных систем. Весь звездный каталог Млечного Пути находился в памяти Наблюдателя, он обратился к нужному разделу. В нем говорилось, что в подобных звездно-планетных системах нередко встречаются пояса астероидов, образованных из вещества, не сумевшего сгруппироваться в планету. Наблюдатель переключил свое внимание с планет на межпланетное пространство и скоро в телескоп действительно обнаружил сначала один, потом второй, третий и множество других астероидов. Моделирование их орбит показало, что это действительно широкий пояс астероидов между четвертой и пятой планетами. Теперь план действий был готов!
Астрономы попытались статистически оценить уникальность Солнечной системы (Martin, Livio, 2015). Сравнивая наши
планеты с чужими, они убедились, что по массе и плотности (и, видимо, по химическому составу) Земля с Венерой, Юпитер, Сатурн и Уран с Нептуном имеют близкие аналоги у других звезд. Аналоги Марса и Меркурия просто невидимы современными приборами. С другой стороны, в Солнечной системе нет суперземель и мини-Нептунов – планет с массой 1–10 масс Земли. Судя по известным экзопланетным системам, 50–80 % всех звезд могут иметь суперземлю или мини-Нептун, но наше Солнце здесь является исключением. По параметрам орбит все планеты Солнечной системы достаточно типичны и имеют много близких аналогов. Но в Солнечной системе нет очень близких к звезде горячих планет. Меркурий делает оборот вокруг Солнца за 88 суток, а во многих экзопланетных системах есть планеты с периодами обращения менее 20 суток. Конечно, такие близкие к звезде планеты проще всего обнаружить современными методами, но даже с поправкой на это получается, что они есть в 90 % экзопланетных систем (рис. 2.7).
В этой главе мы более подробно остановимся на тех процессах во Вселенной, которые в какой-то мере понятны в настоящее время. Первый процесс – это образование
планет . Благодаря тому же «Хабблу» обнаружены уже тысячи планет вне Солнечной системы вокруг различных звезд, и сообщения о новых планетах приходят чуть ли не каждый день. Причем у планет может быть более одного «солнца». В созвездии Скорпиона на расстоянии 22 световых года от нас обнаружена планета, по размеру близкая к Земле, вращающаяся вокруг звезды, которая, в свою очередь, вместе с ней вращается вокруг двойной звезды. То есть на этой планете существует большая проблема с ночью (рис. 1.2), что может быть очень даже хорошо для существования жизни. Наиболее распространенная теория (способ) формирования планет заключается в том, что пылевые околозвездные образования под действием гравитационных сил сначала образуют зародыши планет, которые притягивают к себе все большее количество космических тел до формирования полноценных объектов. Тем не менее в последнее время предложено еще несколько вариантов формирования планет. Например, гипотеза гравитационной неустойчивости, в результате которой планеты могут формироваться путем внезапного коллапса, приводящего к разрушению первичного газопылевого облака. Если рассмотреть все эти способы с точки зрения патентного законодательства, то они являются полноценными изобретениями, так как в них имеется новая последовательность действий и технический результат. Разумеется, мы не предполагаем получения патентов на подобные изобретения, ведь для этого необходимо желание автора.
24 августа 2006 г. в Праге после ожесточенных споров Генеральная ассамблея Международного астрономического союза (МАС) проголосовала за новое определение, которое автоматически лишило Плутон звания
планеты , присвоенного ему тем же МАС в 1930 г. Согласно новому определению, планетой Солнечной системы считается тело: 1) вращающееся по орбите вокруг Солнца; 2) имеющее достаточную массу для того, чтобы сформировать под действием собственного гравитационного поля гидростатически равновесную фигуру (близкую к сферической); 3) «расчистившее» область в районе своей орбиты от более мелких объектов. Таким образом, в Солнечной системе стало всего восемь планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Тела, не удовлетворяющие третьему условию, но не являющиеся спутниками, теперь будут называть карликовыми планетами – к ним относят, например, Плутон и Цереру. Все остальные тела, кроме спутников, называются малыми телами Солнечной системы. Это большинство астероидов, комет и объектов пояса Койпера, некоторые из них являются кандидатами в карликовые планеты.
Однако найти жизнь за пределами Солнечной системы – дальше, чем позволяет наша нынешняя технология, – шансы как будто выше. На сегодняшний день очевидно, что вокруг большинства звезд вращаются
планеты , как это виделось Джордано Бруно еще в XVI в. Уже с 1940-х гг. астрономы полагают, что он мог быть прав. Более ранняя теория о возникновении нашей системы из протуберанца, оторванного от Солнца приливными силами прошедшей поблизости звезды (предполагавшая, что планетарные системы – редкость), была опровергнута. Но лишь в конце 1990-х гг. начали появляться свидетельства существования экзопланет. Планетарные системы отличаются огромным разнообразием, однако в одной только нашей галактике Млечный Путь предположительно около миллиарда планет являются «землеподобными» – т. е. имеют сопоставимые с Землей размеры и находятся на соответствующем расстоянии от своей звезды, соответственно, там может существовать вода, которая не выкипает и не остается вечно замерзшей.
Связанные понятия (продолжение)
Ура́н — планета Солнечной системы, седьмая по удалённости от Солнца, третья по диаметру и четвёртая по массе. Была открыта в 1781 году английским астрономом Уильямом Гершелем и названа в честь греческого бога неба Урана.
Плане́ты земно́й гру́ппы — четыре планеты Солнечной системы: Меркурий, Венера, Земля и Марс. Они расположены во внутренней области Солнечной системы, в отличие от планет-гигантов, расположенных во внешней области. Согласно ряду космогонических теорий, в значительной части внесолнечных планетных систем экзопланеты тоже делятся на твердотельные планеты во внутренних областях и газовые планеты — во внешних. По строению и составу к планетам земной группы близки некоторые каменные астероиды, например...
Мерку́рий — ближайшая к Солнцу планета Солнечной системы, наименьшая из планет земной группы. Названа в честь древнеримского бога торговли — быстрого Меркурия, поскольку она движется по небесной сфере быстрее других планет.
Га́зовые гига́нты — планеты, состоящие в значительной мере из водорода, гелия, аммиака, метана и других газов. Планеты этого типа имеют небольшую плотность, краткий период суточного вращения и, следовательно, значительное сжатие у полюсов; их видимые поверхности хорошо отражают, или, иначе говоря, рассеивают солнечные лучи.
Покры́тие — это астрономическое явление, во время которого, с точки зрения наблюдателя из определённой точки, одно небесное тело проходит перед другим небесным телом, заслоняя его часть.
Малое тело Солнечной системы — термин, введённый Международным астрономическим союзом в 2006 году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками...
Непту́н — восьмая и самая дальняя от Земли планета Солнечной системы. Нептун также является четвёртой по диаметру и третьей по массе планетой. Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше земных.
Облако О́орта — гипотетическая сферическая область Солнечной системы, служащая источником долгопериодических комет. Инструментально существование облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование.
Спу́тник — небесное тело, обращающееся по определённой траектории (орбите) вокруг другого объекта в космическом пространстве под действием гравитации. Различают искусственные и естественные спутники.
Сату́рн — шестая планета от Солнца и вторая по размерам планета в Солнечной системе после Юпитера. Сатурн, а также Юпитер, Уран и Нептун, классифицируются как газовые гиганты. Сатурн назван в честь римского бога земледелия. Символ Сатурна — серп (Юникод: ♄).
Метео́р (др.-греч. μετέωρος, «метеорос»), «парящий в воздухе» — явление, возникающее при сгорании в атмосфере Земли мелких метеорных тел (например, осколков комет или астероидов). Аналогичное явление большей интенсивности (ярче звёздной величины −4) называется болидом. Бывают встречные и догоняющие. Эти междисциплинарные явления изучаются метеоритикой (разделом астрономии), а также физикой атмосферы.
Противостояние (оппозиция) — такое положение небесного тела Солнечной системы, в котором разница эклиптических долгот его и Солнца равна 180°. Таким образом, это тело находится примерно на продолжении линии «Солнце — Земля» и видно с Земли примерно в противоположном Солнцу направлении. Противостояние возможно только для верхних планет и других тел, находящихся дальше от Солнца, чем Земля.
Прохожде́ние , или астрономи́ческий транзи́т — это астрономическое явление, во время которого с точки зрения наблюдателя из определённой точки одно небесное тело проходит перед другим небесным телом, заслоняя его часть.
Затме́ние — астрономическая ситуация, при которой одно небесное тело заслоняет свет от другого небесного тела.
Планета-сирота (также другими названиями могут быть планета-бродяга, планемо, планета-странник, межзвёздная планета, свободно плавающая планета, свободнолетящая планета, квазипланета или одиночная планета) — объект, имеющий массу, сопоставимую с планетарной, и шарообразную форму и являющийся по сути планетой, но не привязанный гравитационно ни к какой звезде, коричневому карлику и даже зачастую просто другой планете (хотя такая планета может иметь спутники). Если планета находится в галактике, она...
Плане́тная систе́ма — система звёзд и различных незвёздообразных астрономических объектов: планет и их спутников, карликовых планет и их спутников, астероидов, метеороидов, комет и космической пыли, которые обращаются вокруг общего центра масс. Несколько гравитационно связанных звёзд с замкнутыми орбитами и их планетные системы образуют звёздную систему. Планетная система, в которую входит Земля, вместе с Солнцем образует Солнечную систему.
Кольца планет ы — система плоских концентрических образований из пыли и льда, вращающаяся вокруг планеты в экваториальной плоскости. Кольца обнаружены у всех газовых гигантов Солнечной системы: Сатурна, Юпитера, Урана, Нептуна, у астероидов Харикло и Хирона, карликовой планеты Хаумеи, и, гипотетически, у спутника Сатурна Реи.
Античное
определение планет как «блуждающих звезд» с самого начала было неоднозначным. На протяжении своего существования это слово обозначало множество различных вещей, часто имея несколько значений в одно и то же время. На протяжении тысячелетий использование этого термина никогда не было строгим, расплывчатое понятие планеты то включало, то исключало из себя множество различных объектов от солнца и луны до спутников и астероидов. С развитием знаний о Вселенной слово «планета» также меняло своё...
Орбитальный резонанс в небесной механике — ситуация, при которой периоды обращения двух (или более) небесных тел соотносятся как небольшие натуральные числа. В результате эти тела периодически сближаются, находясь в определённых точках своих орбит. Возникающие вследствие этого регулярные изменения силы гравитационного взаимодействия этих тел могут стабилизировать их орбиты.
Тума́нность — участок межзвёздной среды, выделяющийся своим излучением или поглощением излучения на общем фоне неба. Ранее туманностями называли всякий неподвижный на небе протяжённый объект. В 1920-е годы выяснилось, что среди туманностей много галактик (например, Туманность Андромеды). После этого термин «туманность» стал пониматься более узко, в указанном выше смысле.Туманности состоят из пыли, газа и плазмы.
Вене́ра — вторая по удалённости от Солнца планета Солнечной системы, наряду с Меркурием, Землёй и Марсом принадлежащая к семейству планет земной группы. Названа в честь древнеримской богини любви Венеры. По ряду характеристик, например, по массе и размерам, Венера считается «сестрой» Земли. Венерианский год составляет 224,7 земных суток. Она имеет самый длинный период вращения вокруг своей оси (243 земных суток) среди всех планет Солнечной системы и вращается в направлении, противоположном направлению...
Ретроградное движение — движение в направлении, противоположном направлению прямого движения. Этот термин может относиться к направлению вращения одного тела вокруг другого по орбите или к вращению тела вокруг своей оси, а также к другим орбитальным параметрам, таким как прецессия и нутация. Для планетных систем ретроградное движение обычно означает движение, которое противоположно вращению главного тела, то есть объекту, который является центром системы.
Пояс Ко́йпера (иногда также называемый пояс Э́джворта — Койпера) — область Солнечной системы от орбиты Нептуна (30 а. е. от Солнца) до расстояния около 55 а. е. от Солнца. Хотя пояс Койпера похож на пояс астероидов, он примерно в 20 раз шире и в 20—200 раз массивнее последнего. Как и пояс астероидов, он состоит в основном из малых тел, то есть материала, оставшегося после формирования Солнечной системы. В отличие от объектов пояса астероидов, которые в основном состоят из горных пород и металлов...
Эри́да (136199 Eris по каталогу ЦМП) — вторая по размеру после Плутона, самая массивная и наиболее далёкая от Солнца карликовая планета Солнечной системы. Ранее была известна под названием Зена (Ксена). Относится к транснептуновым объектам, плутоидам. До XXVI Ассамблеи Международного астрономического союза Эрида претендовала на статус десятой планеты. Однако 24 августа 2006 года Международный астрономический союз утвердил определение классической планеты, которому Эрида, как и Плутон, не соответствует...
Астрономи́ческая едини́ца (русское обозначение: а.е.; международное: с 2012 года — au; ранее использовалось обозначение ua) — исторически сложившаяся единица измерения расстояний в астрономии. Исходно принималась равной большой полуоси орбиты Земли, которая в астрономии считается средним расстоянием от Земли до Солнца:126.
Протопланета — крупный планетный зародыш в протопланетном диске, прошедший стадию внутреннего плавления, что привело к дифференциации недр. Полагают, что эти небесные тела образовались из планетезималей километровых размеров, гравитационно притягивавшихся и сталкивавшихся друг с другом. В соответствии с теорией формирования планет, протопланеты вносили небольшие возмущения в орбиты друг друга и в результате сталкивались, постепенно образуя крупные планеты.
Метео́рный пото́к (звездопад, звёздный дождь, англ. meteor shower) — совокупность метеоров, порождённых вторжением в атмосферу Земли роя метеорных тел.
Юпи́тер — крупнейшая планета Солнечной системы, пятая по удалённости от Солнца. Наряду с Сатурном, Ураном и Нептуном, Юпитер классифицируется как газовый гигант.
Немези́да (лат. Nemesis) — гипотетическая труднообнаружимая звезда (красный карлик, белый карлик или коричневый карлик). Предполагается, что она обращается вокруг Солнца на расстоянии 50—100 тысяч астрономических единиц (0,8—1,5 световых лет), за пределами облака Оорта.
Периге́лий (др.-греч. περί «пери» — вокруг, около, возле, др.-греч. ἥλιος «гелиос» — Солнце) — ближайшая к Солнцу точка орбиты планеты или иного небесного тела Солнечной системы.
Накло́н о́си враще́ния — угол отклонения оси вращения небесного тела от перпендикуляра к плоскости его орбиты. Другими словами — угол между плоскостями экватора небесного тела и его орбиты.
Двойная планета — термин в астрономии, который используется для обозначения бинарной системы, состоящей из двух астрономических объектов, каждый из которых удовлетворяет определению планеты и является достаточно массивным, чтобы оказывать гравитационный эффект, превосходящий гравитационный эффект звезды, вокруг которой они вращаются.
Согласно современным представлениям,
формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды — Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы...
Карликовая планета , согласно определению XXVI Ассамблеи Международного астрономического союза в 2006 году — это небесное тело, которое...
Мле́чный Путь (также наша Галактика или просто Галактика с прописной буквы) — галактика, в которой находятся Земля, Солнечная система и все отдельные звёзды, видимые невооружённым глазом. Относится к спиральным галактикам с перемычкой.
Квазиспу́тник (от лат. quas(i) «наподобие», «нечто вроде») — объект, находящийся в орбитальном резонансе 1:1 с планетой, что позволяет ему оставаться вблизи планеты на протяжении многих орбитальных периодов.
Синхронное вращение (приливный захват) — ситуация, когда период обращения спутника вокруг своей оси совпадает с периодом его обращения вокруг центрального тела. При этом спутник всегда обращён к центральному телу одной и той же стороной, поскольку он обращается вокруг своей оси за то же время, которое ему требуется, чтобы обернуться по орбите вокруг своего партнёра. Приливный захват происходит в процессе взаимного движения и характерен для многих крупных естественных спутников планет Солнечной системы...
Большими (или великими) кометами (англ. Great comets) называют кометы, которые становятся особенно яркими и заметными для земного наблюдателя. В среднем, большая комета появляется раз в десятилетие.
Подробнее: Большая комета
Метеоро́ид — небесное тело, промежуточное по размеру между космической пылью и астероидом.
Небе́сная сфе́ра — воображаемая сфера произвольного радиуса, на которую проецируются небесные тела: служит для решения различных астрометрических задач. За центр небесной сферы принимают глаз наблюдателя; при этом наблюдатель может находиться как на поверхности Земли, так и в других точках пространства (например, он может быть отнесён к центру Земли). Для наземного наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе.
Сидери́ческий пери́од обраще́ния (от лат. sidus, звезда; род. падеж sideris) — промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звёзд. Понятие «сидерический период обращения» применяется к обращающимся вокруг Земли телам — Луне (сидерический месяц) и искусственным спутникам, а также к обращающимся вокруг Солнца планетам, кометам и др.
Экли́птика (от лат. (linea) ecliptica, от др.-греч. ἔκλειψις — затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. Соответственно плоскость эклиптики — плоскость обращения Земли вокруг Солнца (земной орбиты). Современное, более точное определение эклиптики — сечение небесной сферы плоскостью орбиты барицентра системы Земля — Луна.
Прохождение Меркурия по диску Солнца — астрономический транзит, при котором Меркурий движется точно между Солнцем и точкой наблюдения (Землёй, космическим аппаратом и т. п.). При наблюдении с Земли или её окрестностей Меркурий при этом виден как маленькая чёрная точка, перемещающаяся по солнечному диску.
Кома (из лат. coma, от др.-греч. χομη/κομη — волосы) — облако из пыли и газа, окружающее ядро кометы. Вместе «кома» и «ядро» образуют «голову» кометы. С приближением кометы к Солнцу «голова» увеличивается, и иногда появляется «хвост».
Упоминания в литературе (продолжение)
Теория Лапласа, согласно которой Земля была изначально холодной, сохраняла популярность на протяжении почти столетия, хотя ей и противоречили некоторые астрономические данные (например, вращение Венеры и Урана в сторону, обратную всем остальным
планетам и Солнцу). Однако ближе к концу XIX века, когда было твердо установлено, что температура в недрах нашей планеты чрезвычайно высока (по современным данным, свыше 1 000 °C), большинство ученых стало разделять мнение об изначально горячей Земле – огненном шаре, постепенно остывающем с поверхности. Поиски источника этого раскаленного вещества вполне естественно было начать с Солнца. В начале ХХ века астрономы Т. Чемберлен и Ф. Мультон выдвинули, а Дж. Джинс математически обосновал планетезимальную теорию происхождения планет Солнечной системы. Суть ее состоит в том, что некогда поблизости от Солнца («поблизости» – это по космическим масштабам) прошла другая звезда. При этом взаимное притяжение вырвало из каждой из них по гигантскому протуберанцу звездного вещества, которые, соединившись, составили «межзвездный мост», распавшийся затем на отдельные «капли» – планетезимали. Остывающие планетезимали и дали начало планетам и их спутникам.
Если бы наше газово-пылевое облако закручивалось сильнее, имея больший момент импульса и, как следствие, большую массу в районе Юпитера, Солнечная система тоже сформировалась бы с двойной звездой. Солнце было бы меньше, а Юпитер, вместо того чтобы стать гигантской, насыщенной водородом
планетой , вырос бы до размеров небольшой, богатой водородом звезды. Возможно, жизнь процветала бы между двумя звездами. Или вторая звезда послужила бы дополнительным источником энергии, необходимым для поддержания жизни. Однако гравитационная динамика в двухзвездной системе непредсказуема, и могло бы случиться так, что Земля, активно перемещаясь между двумя мощными источниками притяжения, оказалась бы непригодной для жизни планетой с вытянутой орбитой, неустойчивым вращением и бурными колебаниями климата.
Наши самые большие оптические телескопы недостаточно мощны, чтобы обнаружить, есть ли какие-нибудь
планеты вокруг альфы Центавра, ближайшей к нам звезды, находящейся на расстоянии четырех световых лет. До недавних пор такое обнаружение казалось невозможным. Радиоастрономы наблюдали возмущения в сигналах, поступавших с Солнца, когда планеты Юпитер и Сатурн занимали определенные положения, и предположили, что их сила притяжения периодически оказывает большее воздействие на солнечную радиацию. Периодические возмущения в излучениях с других непарных звезд наводили на мысль о схожем явлении, и есть основания быть уверенными в том, что звезда Барнарда, находящаяся от нас в шести световых годах, имеет невидимого двойника, а у тау Кита, удаленной от нас на одиннадцать световых лет, также есть планеты. Русские астрономы полагают, что лазерные вспышки со звезды 61 Лебедя в 1894 и 1908 гг. были ответами на явный сигнал с Земли – извержение вулкана Кракатау в 1883 г. При образовании звезды вращаются быстро, затем в какой-то момент их вращение замедляется, а их энергию выкачивают сопутствующие им планеты. Наблюдения наводят на мысль о том, что, чтобы узнать, были ли у звезды свои планеты, достаточно лишь измерить скорость ее вращения. Неустойчивость в движении звезды в настоящее время можно считать доказательством не обнаруженных при ней планет.
Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие «протозвезды» наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул (фото 9-IV). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в
планеты (см. гл. 9).
Вряд ли можно сейчас установить, родилось ли Солнце в составе рассеянного скопления или возникло в результате сжатия одиночной глобулы, – слишком уж много прошло времени. Без малого 5 млрд лет – срок совершенно запредельный для рассеянного скопления, столько времени они не живут. Зато одиночность Солнца оказалась благоприятным фактором для возникновения и развития жизни на Земле. В двойных звездных системах устойчивые планетные орбиты возможны либо вокруг одной из звезд (если пара широкая), либо (при тесной паре) вокруг центра масс всей системы. При этом вероятность попадания землеподобной
планеты в область температур, благоприятных для развития жизни, гораздо ниже, чем в случае одиночной звезды. В нашей же системе орбиты планет оставались стабильными на протяжении миллиардов лет. Одной из планет повезло оказаться как раз на нужном удалении от Солнца, чтобы на ее поверхности развилась жизнь…
Для объяснения «парадокса» за последние полстолетия были предложены десятки гипотез. И продолжают появляться новые. Последние, правда, принадлежат перу (клавиатуре) исключительно астрофизиков и прочих специалистов, от геологии далеких. (Трудно сказать, что им мешает набрать в поисковике выражение «faint young Sun paradox» и получить пару-другую сотен статей по теме, авторами 99 % которых окажутся геофизики и геохимики.) Как любые достижения, и особенно псевдодостижения науки, которые на слуху, будоражат сознание обывателей и те клюют на нелепые сочетания слов вроде «наномойка» или «нанопарикмахерская», так и какая-нибудь модная «темная энергия» начинает привлекаться для объяснения любых явлений. И тогда «при разумном значении локальной постоянной Хаббла легко объяснить, почему Земля получала приблизительно постоянную плотность потока солнечного излучения на протяжении длительного периода в прошлом» – автор цитаты из статьи, опубликованной в научном журнале, имеет в виду поступательное удаление Земли от Солнца в поле однородного распределения «темной энергии». Или, поскольку светимость Солнца зависит от его массы и величины гравитационной постоянной, при более высоких значениях последней светимость была выше, а орбита Земли – практически круговой и меньшего радиуса, на которой
планета получала больше энергии. Сама же гравитационная постоянная превратилась в «переменную» под влиянием все той же «темной энергии». Если бы Земля была «чугуниевой болванкой», могло быть что угодно, но наша планета – сложное геобиологическое явление, и подобные перестройки орбитальных параметров не могли бы не оставить на ней следов.
А вот на Марсе не так жарко. Воинственная красная
планета , которую, как и Венеру, мы можем наблюдать на земном небосводе, всегда была предметом исследований, легенд, а позже и описывалась в художественной литературе. Планета не намного больше Меркурия и также состоит в основном из каменных пород, разбавленных металлом (в основном железом). На Марсе очень холодно не только из-за удаленности от Солнца, но также из-за остывшего ядра. Средняя температура -50 градусов по Цельсию, однако на экваторе днем примерно +20. Атмосфера очень слабая и состоит в основном из углекислого газа, а время вращения вокруг своей оси – чуть больше земных суток (24 часа и 39 минут). По орбите Марс движется 668 марсианских суток. Поскольку на Марсе есть вода в форме ледников, многих ученых и любителей интересует вопрос: «Есть ли жизнь на Марсе?». Множество преданий гласило о «Богах с красной планеты», многие любители и некоторые профессионалы предполагают, если раньше ядро было горячим, жизнь на планете вполне могла существовать. Также при исследованиях были выдвинуты предположения, что атмосфера на Марсе была ранее более плотной и там даже шли дожди.
Следующий рисунок сделан Томасом Райтом из Дарема, который в 1750 г. выпустил выдающийся труд под вполне соответствующем названием «Оригинальная теория, или Новая гипотеза о Вселенной». Райт был, кроме прочего, архитектором и чертежником, поэтому на его рисунке Солнечная система и Вселенная за ее пределами впервые представлены в масштабе. Вот Солнце, а вот расстояние до орбиты Меркурия, соотносимое с размерами Солнца. Затем изображены Венера, Земля, Марс, Юпитер и Сатурн (другие
планеты в то время еще не были открыты), а затем – восхитительная попытка – Солнечная система из тех же шести планет, собранных в точку, и розетки орбит открытых к тому времени комет. Дальше ныне известной орбиты Плутона Райт не заглядывал. А затем он изобразил на огромном отдалении ближайшую известную тогда звезду, Сириус, которую он уже не решился окружить розеткой кометных орбит. Однако сходство между нашей системой и другими звездными системами прослеживалось четко.
Однако при всех несовершенствах деталей система гомоцентрических сфер, предложенная Евдоксом, достойна нашего восхищения как первая серьезная попытка разобраться в, казалось бы, беспорядочном движении
планет . Для Сатурна и Юпитера и практически для Меркурия система хорошо объясняла их движение по долготе, хотя и оказалась неудовлетворительной для Венеры и полностью развалилась в случае с движениями Марса. Пределы движения по широте также хорошо представлены разнообразными гиппопедами, хотя периоды фактических отклонений от эклиптики и их места в циклах оказались совсем не верны. Однако надо помнить, что Евдокс не мог иметь в своем распоряжении результатов систематических наблюдений; вероятно, в Египте он узнал основные данные о точках стояния и ретроградном движении внешних планет, а также их периоды обращения, которые, безусловно, были хорошо известны вавилонянам и египтянам, тогда как в Греции практически не велось сколько-нибудь продолжительных регулярных наблюдений. И если кто-то повторит давнюю претензию о чудовищной сложности этой системы, нужно иметь в виду, что Евдокс, как замечает Скиапарелли, в своих планетных теориях пользовался лишь тремя элементами: периодом верхнего соединения, сидерическим периодом обращения (функцией которого является синодический период) и наклоном оси третьей сферы к оси четвертой. Для тех же задач сегодня нам требуются шесть элементов!
Имеются различия в движении внутренних и внешних
планет . Первые испытывают значительное влияние Солнца, от которого они удаляются не более чем на 28° (Меркурий) и 48° (Венера). При этом установлены два вида конфигураций, названные нижним, когда Меркурий или Венера оказываются между светилом и Землей, и верхним, когда внутренние планеты находятся за светилом, соединением. Вторые движутся как бы независимо от Солнца и имеют только верхнее соединение. В случаях, когда Земля оказывается между светилом и внешней планетой, возникает явление, которое называется противостоянием. Через каждые 15–17 лет регистрируются великие противостояния, когда Марс занимает соответствующее положение и при этом максимально приближается к Земле.
В ежегодных астрономических календарях траектории
планет отмечены на картах звездного неба. Но если это невозможно для Луны, то почему возможно для планеты? Да потому, что даже соседние планеты – Венера и Марс – не приближаются к Земле менее чем на 40 млн км, а это в 100 раз больше, чем расстояние до Луны. Поэтому и параллакс в 100 раз меньше: если для наблюдателей в Арктике и Антарктике диск Луны смещается на 1,5°, то положение любой планеты сместится не более чем на Г. Для невооруженного глаза этот угол практически незаметен. Если не проводятся особо точные наблюдения, то можно считать, что на видимое положение планет при их наблюдении из разных точек Земли эффект параллакса не влияет. То же справедливо и для Солнца: для него угол параллакса не превышает 18?. Поэтому и рисуют траекторию Солнца на звездных картах в виде линии эклиптики, толщина которой на карте значительно больше, чем этот маленький угол параллакса.
После того как сообщение об открытии распространилось в научном мире, в область пространства в направлении на созвездие Козерога, – именно там в это время находилась двойная
планета относительно Земли, – были направлены телескопы большинства обсерваторий мира, в том числе такие крупные, как Субару в Японии, Хобби-Эберли и Кек-1 в США, Анту, Кьюен и Йепун в Чили, LZT в Канаде и БТА в России, в Симеизе. И уже через два дня наблюдений стало ясно, что у Плутона действительно появилась достаточно плотная атмосфера.
Из-за нависающей над цивилизацией постоянной угрозы разработка системы раннего прогнозирования солнечных вспышек имеет приоритетное значение. В этом направлении ведутся весьма дорогостоящие работы – по всей
планете на них расходуются миллиарды. И сегодня можно с уверенностью утверждать, что техническая база для успешного прогнозирования взрывов в областях солнечных пятен уже подготовлена – чего стоит хотя бы большой космический коронограф LASCO (Large Angle and Spectrometric Coronagraph), который находится на борту знаменитой станции-обсерватории SOHO (Solar and Heliospheric Observatory). Этот прибор уже больше десяти лет детально фиксирует все солнечные вспышки. Благодаря его показаниям получены неплохие результаты.Так, например, при помощи LASCO доказано, что частота многотонных выбросов массы нашей звезды непосредственно связана с солнечным циклом – при минимуме солнечной активности, как правило, происходит не более 3-4 средних и совсем небольших вспышек в месяц, а во время максимума на это же время приходится около 50 корональных выбросов массы.
Перечень подобных наблюдений обширен, но объяснить их с научной точки зрения пока невозможно. Самым волнующим, конечно, является ненаучное предположение о том, что LTP – следы деятельности инопланетян. Да что там говорить о возможности или невозможности трактования LTP, если астрофизики до сих пор не пришли к единому мнению по поводу возникновения своеобразного дуэта небесных тел Земля – Луна? Некоторые специалисты-селенологи утверждают, что Луна никогда не была частью Земли, а образовалась где-то далеко от нашей
планеты и была «захвачена» Землей, когда пролетала рядом с ней. Есть и совсем фантастическая идея о том, что Луна – это инопланетный космический корабль, потерпевший катастрофу на околоземной орбите в глубокой древности. Его поверхность якобы покрыта специальным теплозащитным слоем толщиной в несколько километров, в котором метеориты образовали бесчисленные кратеры. В пользу этого предположения обычно приводят мнение некоторых ученых о том, что внутренняя часть Луны, возможно, представляет собой полую сферу. Или еще один вариант: Луна – это «перевалочная база», постоянная космическая станция инопланетян.
Следует упомянуть и довольно спорную гипотезу панспермии, в основе которой лежат известные факты обмена веществом между небесными телами. Так, при столкновении
планеты с крупным астероидом из ее поверхности выбиваются фрагменты породы, которые могут улететь в космос и попасть на другие планеты. К примеру, на поверхность Земли часто прилетают метеоры с Марса. Благодаря такому обмену возникшие в ходе химической эволюции на одной из планет вещества и катализаторы могут попасть на соседние тела и даже в другие звездные системы. Так за несколько сотен миллионов лет распространение «кирпичиков» жизни может охватить всю нашу Галактику. Подобным образом масштаб химической кухни, готовящей молекулярные блюда для будущей жизни, может расшириться от планетарного до галактического.
Итак, в 1846 году французский ученый Урбен Жан Жозеф Леверье, исследовав особенности движения Урана, вычислил орбиту и положение соседней с ним не известной пока
планеты , которая получила название Нептун. Через несколько лет его внимание привлекли некоторые странности в поведении ближайшей к Солнцу планеты – Меркурия. Его орбита вовсе не была идеально эллиптической. Это означает, что, совершив оборот вокруг Солнца, Меркурий не возвращался в исходную точку. Иными словами, с каждым новым оборотом его перигелий, то есть ближайшая к Солнцу точка орбиты, немного смещался.
Слайфер считается одним из самых известных – или даже самым известным мастером астроспектроскопии. Он оставил после себя труды по спектроскопии
планет , звезд и туманностей. Слайфер изучил спектры излучения ночного неба, полярных сияний, большого числа звезд и комет. Используя методы спектроскопии, Слайфер определил скорости и периоды осевого вращения таких планет, как Венера, Марс, Юпитер, Сатурн, Уран. Он первым получил фотографии спектров больших планет с достаточно высокой дисперсией, подтверждение присутствия межзвездных линий кальция в спектрах большого числа звезд, открыл межзвездный натрий. Он обнаружил, что некоторые диффузные туманности имеют спектр, схожий со спектром звезд, первым измерил высокие лучевые скорости шаровых скоплений и спиральных туманностей. В 1913 году Слайфер получил для туманности Андромеды (М31) значение лучевой скорости, равное 300 км/с. Он одним из первых пришел к заключению, что спиральные туманности являются очень далекими звездными системами. Открытие им огромных пространственных скоростей галактик явилось наблюдательной основой теории расширяющейся Вселенной, которую предложил Хаббл. Слайфер также впервые получил доказательства вращения галактик и измерил его скорость для туманности Андромеды.
Пятое. Астрономы не только находят новые
планеты , но и увеличивают мощность своих телескопов. Раньше планеты других солнечных систем можно было обнаружить, только зарегистрировав колебания, указывающие на гравитационное притяжение к родительской звезде. Мощное оптическое оборудование продолжает совершенствоваться. Например, большой бинокулярный телескоп установлен на горе Грэма недалеко от Тусона. А один европейский консорциум скоро планирует установить в Чили 100-метровый телескоп. Мощные телескопы позволят астрономам анализировать спектр электромагнитного излучения планеты и благодаря этому определять ее состав и выяснять, что находится на ее поверхности – например, есть ли вода. А воды, как мы также недавно выяснили, в космосе очень много. Она формирует большие «облака» рядом со звездами и между ними.
Небесная механика как физико-математическая наука почти три века своего существования объясняла движения
планет Солнечной системы главным образом полем тяготения Солнца – основного или доминирующего тела системы, исходя из закона всемирного тяготения И. Ньютона и трёх основных принципов механики, сформулированных им же. В последние десятилетия в научных исследованиях, посвящённых изучению движения небесных тел в нашей Солнечной системе, в качестве основных характеристик планет стали рассматриваться именно их частоты. Так, согласно существующей «теории колебаний», наша планетная система состоит из отдельных одночастотных колебательных подсистем. Каждая отдельная колебательная подсистема состоит из пары физических тел – Солнца и планеты. Вся же Солнечная система является сложной колебательной системой, состоящей из отдельных колебательных подсистем, в которой Солнце повторено девятикратно (по числу планет). При этом каждая планета имеет свой уникальный набор резонансных соотношений: между орбитами (вращения и обращения) самой планеты или двух планет (например, синхронизация вращений и обращений или и тех, и других), между планетой и Солнцем, между орбитами другой планеты и Солнцем, между орбитами самой планеты и её спутников и др. Заслуга А. М. Молчанова, на мой взгляд, заключается в том, что он в своей статье ещё 40 лет назад выдвинул аргументированную гипотезу о резонансном характере структуры всей Солнечной системы. Более того, он высказал мысль о том, что резонансность характерна для любой динамической системы, в том числе биологической (ИНЕТ, сайт: iflorinsky.psn.ru. Florinsky-a.pdf. Молчанов А. М. Гипотеза резонансной структуры Солнечной системы // Пространство и время. 2013. № 1 (11)).
В большинстве случаев, впрочем, под астрономическим временем понимается не столько время, специфическое для астрономических объектов, сколько принятая у нас на Земле традиционная система измерения времени или летосчисления, которая, прежде всего включает период вращения
планеты Земля вокруг Солнца – один год и период вращения вокруг своей оси – одни сутки[42]. Именно этих характеристики движения небесных тел, которые мы можем измерить (но которые не зависят от нас), и стали основой для измерения времени в человеческой цивилизации. Соответственно, это измеряемое время и стали называть астрономическим, или абсолютным временем. Это, конечно, только самое поверхностное описание. Так, астрономическое время содержит в себе понятия звездного времени и солнечного времени. Для определения среднего солнечного времени астрономы используют наблюдения не самого солнечного диска, а звезд. По звездам же определяется т. н. звездное, или сидерическое (от лат. siderius – звезда или созвездие), время. С помощью математических формул по звездному времени рассчитывается среднее солнечное время[43].
Современные астрономы считают, что вначале образовалась солнечная туманность в виде газово – пылевого облака, которое затем стало сжиматься под действием гравитационных сил. Возможно, это сжатие было ускорено внешними факторами – например, взрывом находящейся недалеко сверхновой. В центре облака образовалось Солнце, под действием гравитационного давления в его центре началась термоядерная реакция, продолжающаяся и поныне. Из окружавшего Солнце огромного уплощенного газово – пылевого облака образовалась планетная система. Земля и родственные ей
планеты (Меркурий, Венера, Марс) аккумулировались из твердых тел и частиц, а в формировании планет – гигантов (Юпитер, Сатурн) и внешних планет (Уран, Нептун) участвовал наряду с твердыми телами также и газ. Вначале вокруг Солнца образовались планетезимали – каменистые тела неправильной формы. Их размеры разнились от совсем небольших до сотен километров в поперечнике. Довольно быстро, через какие – нибудь десятки тысяч лет, планетезимали превратились в протопланеты диаметром 100–500 километров. Считается, что планетам земного типа потребовалось затем около 100 миллионов лет, чтобы вырасти до современных размеров путем аккумулирования масс более мелких небесных тел.