Связанные понятия
Плане́та (греч. πλανήτης, альтернати́вная фо́рма др.-греч. πλάνης — «странник») — небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей.
Ура́н — планета Солнечной системы, седьмая по удалённости от Солнца, третья по диаметру и четвёртая по массе. Была открыта в 1781 году английским астрономом Уильямом Гершелем и названа в честь греческого бога неба Урана.
Большими (или великими) кометами (англ. Great comets) называют кометы, которые становятся особенно яркими и заметными для земного наблюдателя. В среднем, большая комета появляется раз в десятилетие.
Подробнее: Большая комета
Метео́рный пото́к (звездопад, звёздный дождь, англ. meteor shower) — совокупность метеоров, порождённых вторжением в атмосферу Земли роя метеорных тел.
Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг Солнца. Она сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад.
Упоминания в литературе
Для понимания природы
комет понадобились усилия многих поколений ученых. Неожиданные появления комет на небе, их необычный по сравнению с другими светилами вид, ставил в тупик древних философов и ученых. Так, Аристотель считал, что кометы – это сгустившиеся испарения в атмосфере Земли. Первым, кто обнаружил, что кометы располагаются значительно дальше Луны, был Тихо Браге. Искуснейший наблюдатель, он со своими учениками наблюдал движение яркой кометы из двух удаленных друг от друга обсерваторий и определил ее параллакс относительно звезд, что позволило оценить расстояние от кометы до Земли. Однако и после того, как кометы заняли место в Солнечной системе наравне с планетами, их природа и даже их траектории были загадками для ученых. И. Кеплер считал, что движение комет происходит по прямым линиям. Наиболее тщательная разработка теории прямолинейного движения комет была дана в труде польского астронома Яна Гевелия «Cometographia», опубликованном в 1668 г. Только И. Ньютон, наблюдая комету 1680 г., пришел к выводу, что ее истинный путь в Солнечной системе представляет собой параболу. Согласно закону всемирного тяготения, открытому Ньютоном, движение небесных тел вокруг Солнца может происходить по любому коническому сечению, в фокусе которого находится Солнце.
Поэтому при удалении
кометы от Солнца она движется хвостом вперед. В это время скорость движения кометы падает, и мы постепенно теряем ее из вида. Кометы могут исчезать на многие годы, но большинство постепенно возвращается. Каждые 76 лет около Земли появляется большая комета. Она называется кометой Галлея. Впервые Галлея была изображена на китайском рисунке в 168 году до н. э. В 1682 году Эдмунд Галлей, британский королевский астроном, наблюдал движение этой кометы, и после тщательной проверки своих записей он решил, что именно эта комета появляется каждые 76 лет. В 1986 году был запущен космический корабль для сбора данных о комете Галлея. Он передал на Землю 2 000 фотографий с формой и размерами кометы. Оказалось, что комета Галлея в 2 раза больше, чем думали ученые. Ее длина свыше 16 километров, а ширина – почти 10 километров.
О чем вообще идет речь? О падении астероида или
кометы ? В принципе, в обоих случаях последствия схожи, но есть и важное отличие. Кометы обращаются по очень вытянутым орбитам, и скорость их движения заметно выше, чем у астероидов. Поэтому при падении на Землю небольшой кометы выделяется такое же количество энергии, как и при падении куда более крупного астероида. В то же время кометы гораздо реже пересекают орбиту Земли, чем астероиды. До сих пор астрономы не располагают ни одним подтвержденным фактом падения на Землю кометы. Так что, если бы выяснилось, что в районе Тунгуски упала комета, это стало бы уникальным событием.
Причины различия массы Марса между моделями и реальностью пока непонятны. Историю осевого вращения планет мы вскоре рассмотрим. А два последних расхождения между моделями формирования планет и реальностью получили блестящее объяснение в рамках так называемой модели из Ниццы, названной по месту работы ее авторов, опубликованной в трех статьях в журнале Nature (Gomes et al., 2005; Tsiganis et al., 2005; Morbidelli et al., 2005). Эта модель объясняет и другие особенности Солнечной системы – количество и параметры орбит нерегулярных спутников планет-гигантов, орбиты объектов пояса Койпера,
комет , астероидов-троянцев, а также «позднюю тяжелую бомбардировку» через резонансные взаимодействия Юпитера и Сатурна в первый миллиард лет существования Солнечной системы.
Следующий рисунок сделан Томасом Райтом из Дарема, который в 1750 г. выпустил выдающийся труд под вполне соответствующем названием «Оригинальная теория, или Новая гипотеза о Вселенной». Райт был, кроме прочего, архитектором и чертежником, поэтому на его рисунке Солнечная система и Вселенная за ее пределами впервые представлены в масштабе. Вот Солнце, а вот расстояние до орбиты Меркурия, соотносимое с размерами Солнца. Затем изображены Венера, Земля, Марс, Юпитер и Сатурн (другие планеты в то время еще не были открыты), а затем – восхитительная попытка – Солнечная система из тех же шести планет, собранных в точку, и розетки орбит открытых к тому времени
комет . Дальше ныне известной орбиты Плутона Райт не заглядывал. А затем он изобразил на огромном отдалении ближайшую известную тогда звезду, Сириус, которую он уже не решился окружить розеткой кометных орбит. Однако сходство между нашей системой и другими звездными системами прослеживалось четко.
Связанные понятия (продолжение)
Облако О́орта — гипотетическая сферическая область Солнечной системы, служащая источником долгопериодических комет. Инструментально существование облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование.
Малое тело Солнечной системы — термин, введённый Международным астрономическим союзом в 2006 году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками...
Метео́р (др.-греч. μετέωρος, «метеорос»), «парящий в воздухе» — явление, возникающее при сгорании в атмосфере Земли мелких метеорных тел (например, осколков комет или астероидов). Аналогичное явление большей интенсивности (ярче звёздной величины −4) называется болидом. Бывают встречные и догоняющие. Эти междисциплинарные явления изучаются метеоритикой (разделом астрономии), а также физикой атмосферы.
Орбитальный резонанс в небесной механике — ситуация, при которой периоды обращения двух (или более) небесных тел соотносятся как небольшие натуральные числа. В результате эти тела периодически сближаются, находясь в определённых точках своих орбит. Возникающие вследствие этого регулярные изменения силы гравитационного взаимодействия этих тел могут стабилизировать их орбиты.
Кома (из лат. coma, от др.-греч. χομη/κομη — волосы) — облако из пыли и газа, окружающее ядро кометы. Вместе «кома» и «ядро» образуют «голову» кометы. С приближением кометы к Солнцу «голова» увеличивается, и иногда появляется «хвост».
Пояс Ко́йпера (иногда также называемый пояс Э́джворта — Койпера) — область Солнечной системы от орбиты Нептуна (30 а. е. от Солнца) до расстояния около 55 а. е. от Солнца. Хотя пояс Койпера похож на пояс астероидов, он примерно в 20 раз шире и в 20—200 раз массивнее последнего. Как и пояс астероидов, он состоит в основном из малых тел, то есть материала, оставшегося после формирования Солнечной системы. В отличие от объектов пояса астероидов, которые в основном состоят из горных пород и металлов...
Ядро — твёрдая часть кометы, имеющая сравнительно небольшой размер. Вокруг ядра активной кометы (при его приближении к Солнцу) образуется кома.
Покры́тие — это астрономическое явление, во время которого, с точки зрения наблюдателя из определённой точки, одно небесное тело проходит перед другим небесным телом, заслоняя его часть.
Периге́лий (др.-греч. περί «пери» — вокруг, около, возле, др.-греч. ἥλιος «гелиос» — Солнце) — ближайшая к Солнцу точка орбиты планеты или иного небесного тела Солнечной системы.
Астрономический объект или Небесное тело — естественное физическое тело, ассоциация, или структура, которую современная наука определяет как расположенную в наблюдаемой Вселенной. Термин «астрономический объект» нередко используется наравне с термином «тело». Как правило, «небесное тело» представляет собой обособленную, единую, связанную гравитацией (а иногда и электромагнетизмом) структуру. Например: астероиды, спутники, планеты и звёзды. «Астрономические объекты» — гравитационно связанные структуры...
Околосолнечные кометы Кре́йца — семейство околосолнечных комет, названное в честь астронома Генриха Крейца, который впервые показал их взаимосвязь. Считается, что все они являются частями одной большой кометы, которая разрушилась несколько столетий назад.
Спу́тник — небесное тело, обращающееся по определённой траектории (орбите) вокруг другого объекта в космическом пространстве под действием гравитации. Различают искусственные и естественные спутники.
Мерку́рий — ближайшая к Солнцу планета Солнечной системы, наименьшая из планет земной группы. Названа в честь древнеримского бога торговли — быстрого Меркурия, поскольку она движется по небесной сфере быстрее других планет.
Кента́вры — группа астероидов, находящихся между орбитами Юпитера и Нептуна, переходная по свойствам между астероидами главного пояса и объектами пояса Койпера (также по некоторым свойствам похожи на кометы). Они имеют нестабильные, порой сильно вытянутые орбиты, поскольку пересекают орбиты одного или сразу нескольких планет-гигантов. Вследствие этого динамическая жизнь кентавров составляет всего несколько миллионов лет, поскольку крупные планеты просто выталкивают эти объекты со своих орбит гравитацией...
Планеты-гиганты — четыре планеты Солнечной системы (Юпитер, Сатурн, Уран и Нептун) расположенные за пределами пояса астероидов. Эти планеты, имеющие ряд сходных физических характеристик, также называют внешними планетами.
Юпи́тер — крупнейшая планета Солнечной системы, пятая по удалённости от Солнца. Наряду с Сатурном, Ураном и Нептуном, Юпитер классифицируется как газовый гигант.
Околосолнечные, или задевающие Солнце, кометы (англ. sungrazing comets, sungrazers) — кометы, в перигелии проходящие чрезвычайно близко к Солнцу, иногда на расстоянии всего нескольких тысяч километров от его поверхности. Маленькие околосолнечные кометы могут полностью испариться во время такого сближения с Солнцем, тогда как более крупные могут выдержать несколько прохождений перигелия. Однако, давление интенсивно испаряющегося вещества ядра кометы, а также приливные силы, часто приводят комету к...
Противостояние (оппозиция) — такое положение небесного тела Солнечной системы, в котором разница эклиптических долгот его и Солнца равна 180°. Таким образом, это тело находится примерно на продолжении линии «Солнце — Земля» и видно с Земли примерно в противоположном Солнцу направлении. Противостояние возможно только для верхних планет и других тел, находящихся дальше от Солнца, чем Земля.
Непту́н — восьмая и самая дальняя от Земли планета Солнечной системы. Нептун также является четвёртой по диаметру и третьей по массе планетой. Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше земных.
Карликовая планета , согласно определению XXVI Ассамблеи Международного астрономического союза в 2006 году — это небесное тело, которое...
Щели Кирквуда — это определённые области в поясе астероидов, которые создаются резонансным влиянием Юпитера. В этих областях астероиды практически отсутствуют.
Метеоро́ид — небесное тело, промежуточное по размеру между космической пылью и астероидом.
Период вращения космического объекта — время, которое требуется объекту для совершения полного оборота вокруг своей оси относительно звёзд.
Троянские астероиды Юпитера — это две крупные группы астероидов, движущихся вокруг Солнца почти в окрестностях точек Лагранжа L4 и L5 Юпитера в орбитальном резонансе 1:1. Эти астероиды называют по именам персонажей Троянской войны, описанных в Илиаде.
Околоземный объект — объект Солнечной системы, орбита которого проходит в непосредственной близости с Землёй. Перигей всех околоземных объектов составляет менее 1,3 а.е.
Квазиспу́тник (от лат. quas(i) «наподобие», «нечто вроде») — объект, находящийся в орбитальном резонансе 1:1 с планетой, что позволяет ему оставаться вблизи планеты на протяжении многих орбитальных периодов.
Плане́ты земно́й гру́ппы — четыре планеты Солнечной системы: Меркурий, Венера, Земля и Марс. Они расположены во внутренней области Солнечной системы, в отличие от планет-гигантов, расположенных во внешней области. Согласно ряду космогонических теорий, в значительной части внесолнечных планетных систем экзопланеты тоже делятся на твердотельные планеты во внутренних областях и газовые планеты — во внешних. По строению и составу к планетам земной группы близки некоторые каменные астероиды, например...
Потерянная комета (англ. Lost comet) — комета, ранее обнаруженная, но затем потерянная в окрестности последнего прохождения перицентра орбиты, поскольку чаще всего имеется недостаточно данных для надёжного определения орбиты и предсказания положения кометы на ней. Обозначение «D/» применяется для периодических комет, которые более не существуют или считаются исчезнувшими.
Кометы главного пояса — это объекты, вращающиеся вокруг Солнца в области главного пояса астероидов, которые на определённом участке своей орбиты проявляют кометную активность.
Гипотетические естественные спутники Земли — небесные тела, обращающиеся вокруг Земли, существование которых предполагалось астрономами. В настоящее время общепризнано, что единственным естественным спутником Земли является Луна, однако предположения о существовании других спутников неоднократно выдвигались астрономами, публиковались в популярных изданиях и описывались в художественных произведениях.
Двойной астероид — система из двух астероидов, гравитационно связанных друг с другом, вращающихся вокруг общего центра масс, наподобие двойной системы звёзд. Первым обнаруженным бинарным астероидом стал астероид (243) Ида, двойственность которого была установлена во время пролёта мимо него космического аппарата Галилео в августе 1993 года. С тех пор в поясе астероидов было открыто множество двойных систем.
Центр малых планет (ЦМП; англ. Minor Planet Center, MPC) находится в Смитсоновской астрофизической обсерватории (SAO), которая является частью Гарвард-Смитсоновского центра астрофизики (CfA) совместно с Гарвардской университетской обсерваторией (HCO).
Ретроградное движение — движение в направлении, противоположном направлению прямого движения. Этот термин может относиться к направлению вращения одного тела вокруг другого по орбите или к вращению тела вокруг своей оси, а также к другим орбитальным параметрам, таким как прецессия и нутация. Для планетных систем ретроградное движение обычно означает движение, которое противоположно вращению главного тела, то есть объекту, который является центром системы.
Межзвёздные объекты — это объекты или кометы, которые существуют в межзвёздном пространстве, не связанные силами тяготения с какой-либо звездой. Первым обнаруженным известным межзвёздным объектом является 1I/Оумуамуа. Межзвёздный объект может быть выявлен только если он проходит через нашу Солнечную систему вблизи от Солнца или если он отделился от облака Оорта и начал двигаться по сильно вытянутой гиперболической орбите, не связанной с гравитацией Солнца. Объекты со слабыми гиперболическими траекториями...
Подробнее: Межзвёздный объект
Эри́да (136199 Eris по каталогу ЦМП) — вторая по размеру после Плутона, самая массивная и наиболее далёкая от Солнца карликовая планета Солнечной системы. Ранее была известна под названием Зена (Ксена). Относится к транснептуновым объектам, плутоидам. До XXVI Ассамблеи Международного астрономического союза Эрида претендовала на статус десятой планеты. Однако 24 августа 2006 года Международный астрономический союз утвердил определение классической планеты, которому Эрида, как и Плутон, не соответствует...
Спутник астероида — астероид, естественный спутник, обращающийся по орбите вокруг другого астероида. Спутник и астероид представляют собой систему, поддерживающуюся гравитацией обоих объектов. Астероидную систему, в которой размеры спутника сопоставимы c размером астероида, называют двойным астероидом. Также известны системы из трёх компонентов (например, крупные астероиды (45) Евгения и (87) Сильвия, астероид-аполлон (136617) 1994 CC, крупный транснептуновый объект (47171) 1999 TC36 и т. д.).
Дуга наблюдений (англ. Observation arc) — промежуток времени между первым и наиболее недавним наблюдениями, прослеживающими траекторию движения объекта. Обычно дуга наблюдений указывается в днях или годах. Термин наиболее часто употребляется при описании обнаружения и отслеживания астероидов и комет.
Цере́ра (1 Ceres по каталогу ЦМП) — ближайшая к Солнцу и наименьшая среди известных карликовых планет Солнечной системы. Расположена в поясе астероидов. Церера была открыта в 1801 году итальянским астрономом Джузеппе Пиацци в Палермской астрономической обсерватории. Некоторое время Церера рассматривалась как полноценная планета Солнечной системы; в 1802 году она была классифицирована как астероид, но продолжала считаться планетой ещё несколько десятилетий, а по результатам уточнения понятия «планета...
Выродившаяся комета — это комета, которая потеряла большую часть своих летучих веществ и поэтому при приближении к Солнцу уже не образующая хвост или кому. Все летучие вещества уже испарились с ядра кометы, а оставшиеся породы состоят в основном из относительно тяжёлых нелетучих элементов, сходных с теми, которые распространены на поверхности астероидов. Выродившиеся кометы представляют собой небольшие тёмные небесные тела, которые очень трудно обнаружить даже в самые сильные телескопы.
Атиры — группа околоземных астероидов, чьи орбиты полностью находятся внутри орбиты Земли (их расстояние от Солнца в афелии меньше перигелийного расстояния Земли, Q < 0,983 a. e.). Таким образом, даже в самой удалённой точке своей орбиты эти астероиды находятся ближе к Солнцу, чем Земля в самой близкой точке своей орбиты. Согласно сложившейся традиции эта группа астероидов была названа в честь своего первого открытого представителя, — астероида (163693) Атира, который был обнаружен в начале февраля...
Звёздная величина ́ (блеск) — безразмерная числовая характеристика яркости объекта, обозначаемая буквой m (от лат. magnitudo «величина, размер»). Обычно понятие применяется к небесным светилам. Звёздная величина характеризует поток энергии от рассматриваемого светила (энергию всех фотонов в секунду) на единицу площади. Таким образом, видимая звёздная величина зависит и от физических характеристик самого объекта (то есть светимости), и от расстояния до него. Чем меньше значение звёздной величины, тем...
Прохожде́ние , или астрономи́ческий транзи́т — это астрономическое явление, во время которого с точки зрения наблюдателя из определённой точки одно небесное тело проходит перед другим небесным телом, заслоняя его часть.
Прохождение Меркурия по диску Солнца — астрономический транзит, при котором Меркурий движется точно между Солнцем и точкой наблюдения (Землёй, космическим аппаратом и т. п.). При наблюдении с Земли или её окрестностей Меркурий при этом виден как маленькая чёрная точка, перемещающаяся по солнечному диску.
Вулкан — гипотетическая малая планета, орбита которой предполагалась расположенной между Меркурием и Солнцем.
Упоминания в литературе (продолжение)
Соответственно, никакого взрыва на Земле или недалеко от поверхности Земли быть не могло. Сторонники же говорили, что
комета состояла из льда, снега и грязи – именно поэтому до сих пор не найдено ни одного фрагмента «метеорита». Это была огромная снежная глыба – весом в миллионы тонн – которая на страшной скорости влетела в атмосферу. Она сумела войти, но долететь до самой поверхности Земли не смогла. Эта глыба разогрелась до нескольких тысяч градусов и взорвалась на высоте 5–7 километров. В дальнейшем были названы несколько комет, которые могли врезаться в Землю, например, говорилось об осколке кометы Галлея или кометы Энке – Баклунда. В пользу «кометной» гипотезы свидетельствует наблюдавшееся свечение неба. Комета, в отличие от метеорита, может «оповещать» о своем приближении. И те облака, и зарево, о которых говорили очевидцы, как раз типичны для комет. Сторонниками версии кометы Энке, в частности, были сотрудник Комитета по метеоритам Академии наук СССР Игорь Зоткин и чешский астроном Любор Кресак.
Благодаря длительным наблюдениям за планетой в начале двадцать первого века астрономам удалось установить многие характеристики пары, в том числе состав пород, газовый состав атмосферы, альбедо и другие. Оказалось, что Плутон не похож на свой спутник, так как плотность его вдвое больше, а отражательная способность меньше. По сути Харон являлся куском водяного льда, в то время как Плутон имел каменное ядро и был покрыт не только толстым слоем льда, но и замерзшими газами и обломочным материалом – свалившимися на него за миллиарды лет осколками астероидов, метеоритов и ядер
комет , а также кое-где слоем пыли, образующим своеобразные темные «моря».
Наименование
комет подчиняется иным правилам. Кометы – это огромные глыбы замороженных газов. Они прилетают к Солнцу издалека, на короткое время разогреваются его лучами и начинают интенсивно испаряться, демонстрируя нам свои газово-пылевые хвосты и давая астрономам редкую возможность изучать древнейшее вещество Вселенной, застывшее в ядре кометы миллиарды лет назад. Важно открыть комету вовремя. Упустишь эту возможность – комета промчится мимо Солнца и навсегда уйдет вдаль, в холодную бездну, унося с собой загадку своего рождения. Чтобы стимулировать поиск комет и не пропустить ни одной, им, наряду со специальным обозначением, присваивают имя первооткрывателя. Часто этой чести удостаиваются любители астрономии, готовые провести тысячи ночей у телескопа, чтобы принести пользу науке и, разумеется, оставить в истории свое имя. Честь и хвала им за это!
Ключи к раскрытию последующих событий содержатся в летописи Солнечной системы, записанной в ее планетах и спутниках,
кометах и астероидах, а также в бесчисленных и разнообразных метеоритах. Одним из таких ключей является то, что все планеты и спутники обращаются вокруг Солнца в одной и той же плоскости и в одном и том же направлении. Более того, ближайшие к Солнцу планеты вращаются вокруг собственной оси примерно в той же плоскости и направлении. Ничто в законах движения не обусловливает эту общность вращения; планеты и спутники могли бы вращаться вокруг оси и по орбитам любым способом – с севера на юг, с востока на запад, сверху вниз или снизу вверх – и при этом не нарушать закона тяготения. Такое разнообразие наверняка имело бы место, если бы планеты и спутники были втянуты в Солнечную систему извне. Наблюдаемое орбитальное единообразие в нашей Солнечной системе, напротив, свидетельствует о том, что все ее планеты и спутники образовались в одном и том же плоском, крутящемся газово-пылевом диске и примерно в одно и то же время. Все эти гигантские космические тела сохраняют тот же принцип вращения – общий вращательный момент всей Солнечной системы – со времени начала закручивания облака.
Спутники зафиксировали своеобразные «дыры» протяженностью в несколько тысяч километров, в пределах которых подобное свечение намного ниже средней величины по планете. Возможно, подобные «дыры» образуются под воздействием небольших
комет , состоящих из рыхлого снега, покрытого непрочной и тонкой коркой пыли. Дальнейшие расчеты показали, что для возникновения наблюдаемого количества «дыр» с Землей должно было сталкиваться ежегодно 18 млн комет диаметром около 12 м, несущих не менее 100 тонн воды каждая, а этого было бы вполне достаточно для образования со временем на Земле всего Мирового океана.
Наконец тайна
комет была раскрыта. Их в космосе оказалось очень много. В одной только Солнечной системе насчитали более 900 комет, но ученые не без оснований предполагают, что кометы существуют и в нашей галактике, и в других. Все кометы, находящиеся в Солнечной системе, вращаются вокруг Солнца, и у многих из них уже высчитаны орбиты вращения. Они движутся вокруг Солнца по сильно вытянутому кругу – эллипсу. У некоторых комет орбита очень длинная, и их можно увидеть с Земли лишь раз в тысячу или даже в миллион лет, другие появляются чаще – раз в несколько лет.
Слайфер считается одним из самых известных – или даже самым известным мастером астроспектроскопии. Он оставил после себя труды по спектроскопии планет, звезд и туманностей. Слайфер изучил спектры излучения ночного неба, полярных сияний, большого числа звезд и
комет . Используя методы спектроскопии, Слайфер определил скорости и периоды осевого вращения таких планет, как Венера, Марс, Юпитер, Сатурн, Уран. Он первым получил фотографии спектров больших планет с достаточно высокой дисперсией, подтверждение присутствия межзвездных линий кальция в спектрах большого числа звезд, открыл межзвездный натрий. Он обнаружил, что некоторые диффузные туманности имеют спектр, схожий со спектром звезд, первым измерил высокие лучевые скорости шаровых скоплений и спиральных туманностей. В 1913 году Слайфер получил для туманности Андромеды (М31) значение лучевой скорости, равное 300 км/с. Он одним из первых пришел к заключению, что спиральные туманности являются очень далекими звездными системами. Открытие им огромных пространственных скоростей галактик явилось наблюдательной основой теории расширяющейся Вселенной, которую предложил Хаббл. Слайфер также впервые получил доказательства вращения галактик и измерил его скорость для туманности Андромеды.
По образному выражению американского астронома Фреда Уипла, ядро
кометы похоже на «грязный снежок». Оно имеет размеры от сотен метров до десятков километров и состоит из замороженных газов (или легкоплавких веществ, которые при нормальном давлении и комнатной температуре находились бы в газообразном состоянии) с вкраплениями тугоплавких каменистых частиц и пылинок. При приближении кометы к Солнцу под действием его лучей «льды» начинают испаряться и появляется туманная газообразная оболочка, вместе с ядром образующая голову кометы диаметром от тысячи до миллиона километров. Из газа головы формируется хвост кометы, направленный в противоположную от Солнца сторону (удаляясь от Солнца, комета как бы пятится – идет хвостом вперед). Раньше причиной отклонения хвоста считали исключительно давление солнечных лучей. Однако теперь известно, что это воздействие солнечного ветра, которое на два порядка (приблизительно в 100 раз) сильнее гравитационного притяжения Солнца, а потому молекулы головы отбрасываются назад. Кометные хвосты простираются иногда на десятки и сотни миллионов километров. Однако вещество хвостов настолько разрежено, что сквозь них видны звезды без всякого ослабления их блеска (кубический километр хвоста кометы содержит меньше вещества, чем кубический миллиметр земной атмосферы на уровне моря).
Но не является ли эта планета потенциальной угрозой Земле? В 1980-е годы появилась гипотеза, согласно которой к периодическим вымираниям флоры и фауны на Земле может быть причастен невидимый коричневый карлик, расположенный на окраинах Солнечной системы и периодически посылающий к нам потоки
комет . Гипотетическая звезда получила звучное и зловещее название Звезда смерти, или Немезида, в честь древнегреческой богини возмездия. В 1990-е годы для объяснения движения некоторых странных комет высказывались предположения о существовании планеты размером с Юпитер. В обоих случаях речь идет о погасших звездах, которые стали газовыми гигантами. Именно такова планета Батыгина – Брауна.
Самой яркой частью головы
кометы является её ядро, состоящее из обычного льда, смёрзшихся газов и твёрдых частиц. Ядро может иметь размеры до нескольких километров. Оно при приближении кометы к Солнцу начинает испаряться, и вокруг него возникает светящаяся под действием солнечных лучей газовая оболочка – кома.
Стали понятны и дополнительные детали наблюдения свидетелей. Пуск по баллистической траектории уводит межконтинентальную ракету значительно выше, чем пуск на низкую орбиту искусственного спутника Земли, причем вывод на большую высоту около 450–480 км происходит уже на активном участке траектории. При высоте подъема 1000 км боевые пуски ракет с Тюратама видны на удалении в несколько тысяч километров и достаточно высоко над горизонтом, под углом до 30°. Особенно хорошо «звезда» ракеты с ореолом инверсионно-газового следа видна в ясную безлунную ночь с возвышенного места, оттуда, где видимый горизонт не заслонен близко расположенными объектами. В горах этот световой эффект «летящей в небе
кометы » усилен из-за чистоты воздуха и высокого положения наблюдателя. В городах эти наблюдения затруднены и из-за ограничения видимого горизонта строениями и из-за задымленности воздуха.
Сенсационную версию выдвинули сразу несколько ученых из разных стран. Тунгусский метеорит на самом деле был
кометой , которая разогрелась в атмосфере Земли. Мощность взрыва соответствовала энергии самой мощной водородной бомбы. Ударная волна дважды обогнула нашу планету. Очевидцы рассказывают, что даже в Лондоне ночью было так светло, что читали газеты. Но мало кто знает, что если бы тунгусское комическое тело опоздало на 4 часа, не было бы Санкт-Петербурга! Оно упало в Сибири, и специалист по астероидам Пулковской обсерватории Сергей Смирнов до сих пор хранит пасхальное яйцо с изображением звездочета, которое с детства увлекло его астрономией. Но теперь слова «астероид» и «комета» он давно не связывает с лирикой. Смирнов – один из разработчиков уникальной программы, которая включает астероидную базу данных.
Третье. В июле 2004 года команда астрофизиков сообщила, что радиоизлучение газового облака Стрелец В2, расположенного рядом с центром Млечного пути, указывает на присутствие молекул альдегида, что может свидетельствовать о существовании предбиологической жизни. Альдегиды участвуют в формировании аминокислот, основных компонентов протеинов. Те же ученые ранее сообщали о том, что обнаружили в космосе скопления других органических молекул, в том числе гликольальдегида – проще говоря, сахара. Несомненно, открытый космос полон сложных молекул – а не просто атомов, – необходимых для жизни. Возможно,
кометы в других солнечных системах переносят эти молекулы на планеты. Точно так же кометы нашей Солнечной системы могли «занести» их на Землю.
Точку над «i» поставил Роберт Поред, один из авторов сенсационного научного сообщения: «Если метеорит или
комета способны принести неповрежденные атомы углерода на поверхность Земли, то, вероятно, и другие органические соединения могут пережить подобное воздействие. А это значит, что именно космос обеспечил нашу планету теми материалами, из которых затем появилась жизнь».