Связанные понятия
Теория функций вещественной переменной (или теория функций действительного переменного) — раздел анализа, нацеленный на углублённое изучение двух понятий «классического» математического анализа: производной и интеграла.
Дискре́тная матема́тика — часть математики, изучающая дискретные математические структуры, такие, как графы и утверждения в логике.
Аналитическая механика — раздел теоретической механики и теоретической физики, в котором формулируются и используются общие принципы (дифференциальные или интегральные) механики, на их основе выводятся основные дифференциальные уравнения движения, исследуются сами уравнения и методы их интегрирования.
Упоминания в литературе
Функциональная структура понятий не составляет специфической особенности
чистой математики (арифметики, алгебры). Она свойственна в одинаковой мере и ее остальным отраслям, а также области математически обоснованного естествознания. Не только понятие отвлеченного члена, но также и основные понятия геометрии, механики, физики, химии (как, например, понятия пространства, времени, атома, химического элемента) постепенно утрачивают в современной науке (или уже утратили вполне) свой субстанциальный характер и превращаются в функциональные понятия, в понятия отношений. В области геометрии первый шаг в этом направлении сделал Декарт, которому удалось при помощи открытой им аналитической геометрии свести основные отношения пространства на отношения чисел. Впоследствии дифференциальная и проективная геометрии и новейшие учения о пространственных многообразиях высшего порядка завершили этот логический процесс, представив исчерпывающее доказательство тому, что все пространственные образования, равно как и само пространство, целиком сводятся для научной мысли к известным функциональным отношениям, точнее, к различным типам функциональных отношений, находящих свое адекватное выражение в закономерно развивающихся рядах численных значений.
В 1874 г. в Санкт-Петербургском университете защитил на степень магистра математики работу «Общая теория интегрирования линейных дифференциальных уравнений высших порядков частными производными». В том же году его избрали доцентом кафедры
чистой математики Киевского университета. Читал лекции по теории вероятностей, теории чисел, разностному исчислению. Через два года опубликовал работу, посвященную интегрированию дифференциальных уравнений механики, и успешно защитил диссертацию «Интегрирование дифференциальных уравнений механики» (1877) на степень доктора чистой математики. Был назначен экстраординарным профессором, с 1888 г. – ординарным, с 1899 г. – заслуженным профессором математики Киевского университета.
2. Уничтожить расхождение между «строгими» методами
чистых математиков и «нестрогими» приёмами математических рассуждений, применяемых прикладными математиками, физиками и техниками.
Родился 9-го января 1882 г. в м[естечке] Евлах Елизаветпольской г[убернии], где отец его строил тогда Закавказскую ж[елезную] д[орогу]. Детство провел в Тифлисе и главным образом в Батуме. Учился во 2-й Тифлисской классической гимназии и окончил там курс в 1900-м г. Дальнейшее образование получил на физико-математическом факультете Московского университета, по математическому отделению. В 1904 г. окончил здесь курс, специализировавшись по
чистой математике , и был оставлен при кафедре. Кандидатское сочинение писал на самостоятельно намеченную тему «Об особенностях плоских кривых, как местах нарушений непрерывности»; это сочинение предполагалось сделать частью работы общефилософского характера «Прерывность, как элемент мировоззрения». В университете Ф[лоренский] работал преимущественно в атмосфере идей теории функций действительного переменного и Н. В. Бугаева и под дружеским покровительством Н. Е. Жуковского. Параллельно с занятиями математикой и физикой шло изучение философии на историко-филологическом факультете у С. Н. Трубецкого и Л. М. Лопатина. В 1904 г. Ф[лоренский] поступил студентом в Московскую Духовную Академию и с этого времени поселился в Сергиевском Посаде. В Академии он занимался дисциплинами, необходимыми ему в разработке общего мировоззрения, – философскими, филологическими, археологическими, историей религии, и отчасти продолжал работы математические. Будучи на IV курсе, был избран на кафедру истории философии, которую затем занимал с осени того же 1908 года в качестве и[сполняющего] д[олжность] доцента, а с 1911 – э[кстра]о[рдинарного] проф[ессора], по защите на степень магистра диссертации «О духовной истине».
Связанные понятия (продолжение)
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны...
Эллиптическая функция — в комплексном анализе периодическая в двух направлениях функция, заданная на комплексной плоскости. Эллиптические функции можно рассматривать как аналоги тригонометрических (имеющих только один период). Исторически, эллиптические функции были открыты как функции, обратные эллиптическим интегралам.
Прикладна́я матема́тика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и техники. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и исследование операций, моделирование сплошных сред (Механика сплошных сред), биоматематика и биоинформатика, теория информации, теория игр, теория вероятностей и статистика, финансовая математика и актуарные расчёты, криптография, а следовательно...
Гармони́ческий ана́лиз (или фурье́-ана́лиз) — раздел математического анализа, в котором изучаются свойства функций с помощью представления их в виде рядов или интегралов Фурье. Также метод решения задач с помощью представления функций в виде рядов или интегралов Фурье.
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Лузита́ния — московская математическая школа, созданная известным русским математиком Н. Н. Лузиным. Сформировалась в конце 1910-х — начале 1920-х годов, распалась в середине 1930-х годов как вследствие естественного математического развития, так и по внешним, в том числе, политическим причинам (см. Дело Лузина).
Высшая математика — курс обучения в средних и высших учебных заведениях, включающий высшую алгебру и математический анализ.
Элементарная математика — несколько неопределённое понятие, охватывающее те разделы математики, которые изучаются в средней школе.
А́лгебра (от араб. الْجَبْر, «аль-джабр» — восполнение) — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Тео́рия вероя́тностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.
Теория потенциала — раздел математики и математической физики, посвящённый изучению свойств дифференциальных уравнений в частных производных в областях с достаточно гладкой границей посредством введения специальных видов интегралов, зависящих от определённых параметров, называемых потенциалами.
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Теория приближений — раздел математики, изучающий вопрос о возможности приближенного представления одних математических объектов другими, как правило более простой природы, а также вопросы об оценках вносимой при этом погрешности. Значительная часть теории приближения относится к приближению одних функций другими, однако есть и результаты, относящиеся к абстрактным векторным или топологическим пространствам.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Данная статья представляет собой обзор основных событий и тенденций в истории математики с древнейших времён до наших дней.
Подробнее: История математики
Прикладная механика — техническая наука, посвящённая исследованиям устройств и принципов механизмов.
Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики...
Теория устойчивости — техническая и физико-математическая дисциплина, изучающая закономерности поведения систем под действием внешних воздействий.
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения.
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Теорети́ческая меха́ника (в обиходе — теормех) — наука об общих законах механического движения и взаимодействия материальных тел. Будучи по существу одним из разделов физики, теоретическая механика, вобрав в себя фундаментальную основу в виде аксиоматики, выделилась в самостоятельную науку и получила широкое развитие благодаря своим обширным и важным приложениям в естествознании и технике, одной из основ которой она является.
Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...
Теория чисел , или высшая арифметика, — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Выпуклая геометрия — ветвь геометрии, изучающая выпуклые множества, в основном, в евклидовом пространстве. Выпуклые множества возникают естественным образом во многих областях, в том числе в вычислительной геометрии, выпуклом анализе, комбинаторной геометрии, функциональном анализе, геометрии чисел, интегральной геометрии, линейном программировании, теории вероятностей.
Тополо́гия (от др.-греч. τόπος — место и λόγος — слово, учение) — раздел математики, изучающий...
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий...
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве.
Теория вычислимости , также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Теория представлений — раздел математики, изучающий абстрактные алгебраические структуры с помощью представления их элементов в виде линейных преобразований векторных пространств. В сущности, представление делает абстрактные алгебраические объекты более конкретными, описывая их элементы матрицами, а операции сложения и умножения этих объектов — сложением и умножением матриц. Среди объектов, поддающихся такому описанию, находятся группы, ассоциативные алгебры и алгебры Ли. Наиболее известной (и, исторически...
Матема́тика (др.-греч. μᾰθημᾰτικά < μάθημα «изучение; наука») — наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории. Исторически сложилась на основе операций подсчёта, измерения и описания формы объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке...
Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций.
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Это подразделение общей информатики и математики, которое сосредотачивается на более абстрактных или математических аспектах вычислительной техники и включает в себя теорию алгоритмов.
Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).
Филосо́фия матема́тики — раздел философии науки, исследующий философские основания и проблемы математики: онтологические, гносеологические, методологические, логические и аксиологические предпосылки и принципы математики в целом, её различных направлений, дисциплин и теорий. В широком смысле философия математики занимается построением семантической теории «языка» математики для изучения смысла математических высказываний и сущности абстрактных объектов.
Теория колебаний — теория, рассматривающая всевозможные колебания, абстрагируясь от их физической природы. Для этого используется аппарат дифференциального исчисления.
Общая алгебра (также абстрактная алгебра, высшая алгебра) — раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, модули, решётки, а также отображения между такими структурами.
Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Алгебраическая группа — это группа, являющаяся одновременно алгебраическим многообразием, причём групповая операция и операция взятия обратного элемента являются регулярными отображениями многообразий.