Связанные понятия
Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Центра́льные преде́льные теоре́мы (Ц. П. Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.
Подробнее: Центральная предельная теорема
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Медиа́на (от лат. mediāna — середина) в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой...
Неравенство Берри — Эссеена — неравенство, позволяющее оценить скорость сходимости суммы независимых случайных величин к случайной величине с нормальным распределением. Сам факт подобной сходимости носит в теории вероятностей название центральной предельной теоремы. Это неравенство было независимо выведено Эндрю Берри в 1941 и Карлом-Густавом Эссееном в 1942 годах.
В теории вероятностей и статистике, о наборе случайных величин говорят, что они являются независимыми (и) одинаково распределёнными, если каждая из них имеет такое же распределение, что и другие, и все величины являются независимыми в совокупности. Фраза «независимые одинаково распределённые» часто сокращается аббревиатурой i.i.d. (от англ. independent and identically-distributed), иногда — «н.о.р».
Подробнее: Независимые одинаково распределённые случайные величины
Полуинвариант ы, или семиинварианты, или кумулянты — коэффициенты в разложении логарифма характеристической функции случайной величины в ряд Маклорена.
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
Геометри́ческое распределе́ние в теории вероятностей — распределение дискретной случайной величины, равной количеству испытаний случайного эксперимента до наблюдения первого «успеха».
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Непреры́вное равноме́рное распределе́ние — в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие интервалу , характеризующееся тем, что плотность вероятности на этом интервале постоянна.
Частное распределение (маргинальное распределение) — вероятностное распределение одной или множества случайных величин, рассматриваемых в качестве компоненты или множества компонент некоторого известного многомерного распределения.
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Статистический параметр или параметр совокупности — это величина, которая индексирует семейство распределений вероятностей. Его можно расценивать как числовую характеристику совокупности или статистической модели.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Принцип максимума энтропии утверждает, что наиболее характерными распределениями вероятностей состояний неопределенной среды являются такие распределения, которые максимизируют выбранную меру неопределенности при заданной информации о «поведении» среды. Впервые подобный подход использовал Д.Гиббс для нахождения экстремальных функций распределений физических ансамблей частиц. Впоследствии Э.Джейнсом был предложен формализм восстановления неизвестных законов распределения случайных величин при наличии...
Функция делителей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем функция дивизоров.
В теории
вероятностей, производящая функция вероятностей дискретной случайной величины представляет собой степенной ряд функции вероятности случайной величины. Производящие функции вероятностей часто используются для краткого описания их последовательности вероятностей P(X=i) для случайного величины Х, с возможностью применить теорию степенных рядов с неотрицательными коэффициентами.
Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания...
'
Обобщённое нормальное (обобщённое гауссовское) распределение' есть одно из двух параметрических семейств абсолютно непрерывных вероятностных распределений на действительной прямой. Два подхода к определению данного семейства распределений обозначаются далее как «подход 1» и «подход 2». Однако данные наименования не являются общепринятыми.
Неравенство Хёфдинга является частным случаем неравенства Адзума — Хёфдинга и более общим случаем неравенства Бернштейна, доказанного Сергеем Бернштейном в 1923 году. Они также являются частными случаями неравенства МакДиармида.
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Теорема об уголках — доказанный результат в области аддитивной комбинаторики, утверждающий присутствие некой упорядоченной (в арифметическом смысле) структуры, называемой уголком, в достаточно больших двумерных множествах любой фиксированной плотности.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Характеристи́ческая фу́нкция случа́йной величины ́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
В математической статистике
критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению (для одной выборки) или о равенстве нулю медианы разности (для двух связанных выборок). Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.
Случайная перестановка — это случайное упорядочение множества объектов, то есть случайная величина, элементарными событиями которой являются перестановки. Использование случайных перестановок зачастую является базой в областях, использующих рандомизированные алгоритмы. К таким областям относятся теория кодирования, криптография и моделирование. Хорошим примером случайной перестановки является тасование колоды карт.
Подробнее: Случайные перестановки
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
В комбинаторной математике под числом встреч понимается число перестановок множества {1, ..., n} с заданным числом неподвижных элементов.
Подробнее: Число встреч (комбинаторика)
Тождество Вальда определяет формулу для вычисления математического ожидания для случайных сумм.
Кванти́ли распределе́ния Стью́дента (коэффициенты Стьюдента) — числовые характеристики, широко используемые в задачах математической статистики, таких как построение доверительных интервалов и проверка статистических гипотез.
Выборка по значимости (англ. importance sampling, далее ВЗ) — один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой-либо величины методом Монте-Карло. Идея ВЗ основывается на том, что некоторые значения случайной величины в процессе моделирования имеют бо́льшую значимость (вероятность) для оцениваемой функции (параметра), чем другие. Если эти «более вероятные» значения будут появляться в процессе выбора случайной величины...
Закон нуля или единицы — утверждение в теории вероятностей о том, что всякое остаточное событие, то есть событие, наступление которого определяется лишь сколь угодно удалёнными элементами последовательности независимых случайных событий или случайных величин, имеет вероятность нуль или единица. Закон открыт Андреем Николаевичем Колмогоровым, поэтому иногда называется в его честь.
Доля единицы (аликвотная дробь) — это рациональное число в виде дроби, числитель которой равен единице, а знаменатель — положительное целое число. Доля единицы, таким образом, является обратным числом положительного целого числа, 1/n. Примеры — 1/1, 1/2, 1/3, 1/4 и т. д.
Вероятностный метод — неконструктивный метод доказательства существования математического объекта с заданными свойствами. В основном используется в комбинаторике, но также и в теории чисел, линейной алгебре и математическом анализе, а также в информатике (например, метод вероятностного округления) и теории информации.
Бесконе́чно дели́мое распределе́ние в теории вероятностей — распределение случайной величины такой, что она может быть представлена в виде произвольного количества независимых, одинаково распределённых слагаемых.
Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В отличие от t-критерия, позволяет сравнивать средние значения трёх и более групп. Разработан Р. Фишером для анализа результатов экспериментальных исследований. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of VAriance).
Коэффицие́нт масшта́ба — это параметр вероятностного распределения. Физически конкретное значение данного параметра может быть связано с выбором шкалы измерения.