Связанные понятия
Теорема о гномоне — это геометрическая теорема. Она утверждает, что два параллелограмма в гномоне имеют равную площадь.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
В геометрии число Хееша фигуры — это максимальное число слоёв копий той же фигуры, которые могут её окружать. Задача Хееша — это задача определения набора чисел, которые могут быть числами Хееша. И то, и другое названы именем немецкого геометра Генриха Хееша , который нашёл мозаику с числом Хееша 1 (объединение квадрата, правильного треугольника и треугольника с углами 30-60-90) и предложил более общую задачу.
В геометрии конциклическими (или гомоциклическими) точками называют точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек.
Подробнее: Конциклические точки
Пра́вильный семнадцатиуго́льник — геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Среди других правильных многоугольников с больши́м (больше пяти) простым числом сторон интересен тем, что его можно построить при помощи циркуля и линейки (так, семи-, одиннадцати- и тринадцатиугольники построить циркулем и линейкой нельзя).
Упоминания в литературе
За пределами Европы древковое оружие принимало самые разнообразные формы, иногда весьма причудливые – их верхние части представляли собой головы людей или
животных. Самый простой пример – томагавк американских индейцев, который мог использоваться как топорик для рубки или метания. Индия, Япония и острова южных морей внесли существенный вклад в многообразие боевых топоров, а маори из Новой Зеландии обладали топориком из диорита, который, несомненно, превосходно раскалывал черепа.
Связанные понятия (продолжение)
Идеальный треугольник — треугольник в геометрии Лобачевского, все три вершины которого являются идеальными, или бесконечно удалёнными, точками. Идеальные треугольники иногда называют трижды асимптотическими треугольниками. Их вершины иногда называют идеальными вершинами. Все идеальные треугольники равны.
Плотность упаковки в некотором пространстве — это доля пространства, заполненная упакованными телами (фигурами). В задачах упаковки обычно целью является получение упаковки с максимальной возможной плотностью.
Наибольший многоугольник единичного диаметра — многоугольник с n сторонами (для заданного числа n), диаметр которого равен единице (то есть любые две его точки находятся друг от друга на расстоянии, не превосходящем единицы), и имеющий наибольшую площадь среди других n-угольников диаметра единица. Решением (не уникальным) для n = 4 является квадрат, решением для нечётных n является правильный многоугольник, при этом для остальных чётных n правильный многоугольник наибольшим не будет.
Большой ромбогексаэдр — это невыпуклый однородный многогранник. Двойственным ему является большой ромбогексакрон. Вершинная фигура — самопересекающийся четырёхугольник.
Гипотеза Тёплица , также известная как гипотеза о вписанном квадрате — нерешённая проблема геометрии. Формулировка гипотезы...
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Упаковка тетраэдров — это задача расположения одинаковых правильных тетраэдров в трёхмерном пространстве так, чтобы заполнить как можно большую долю пространства.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
Одиннадцатиуго́льник , называемый иногда Гендекаго́н — многоугольник с одиннадцатью углами. Одиннадцатиугольником также называют всякий предмет, имеющий такую форму.
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Гиппокра́товы лу́ночки — серповидные фигуры, указанные Гиппократом Хиосским, ограниченные дугами двух окружностей.
Полярный треугольник — понятие сферической геометрии. Полярным для данного сферического треугольника называется такой сферический треугольник, по отношению к сторонам которого вершины данного треугольника являются полюсами.
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Гексамино — шестиклеточное полимино, то есть плоская фигура, состоящая из шести равных квадратов, соединённых сторонами. С фигурами гексамино, как со всеми полимино, связано много задач занимательной математики.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение
Описанный многоугольник , известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Пятиугольная антипризма — это третья в бесконечном ряду антипризм, образованных чётным набором треугольных сторон и закрытых с обеих сторон двумя многоугольниками. Она состоит из двух пятиугольников, связанных друг с другом кольцом из 10 треугольников, что даёт в сумме 12 граней. Таким образом, многогранник является неправильным додекаэдром.
Окружность на сфере получается при пересечении сферы с плоскостью. Если плоскость проходит через центр сферы (то есть является диаметральной плоскостью), то получившаяся окружность будет иметь максимальный возможный радиус. Такая окружность называется большой окружностью (иногда большим кругом). Если пересекающая плоскость не проходит через центр, то получившаяся окружность называется малой окружностью. В сферической геометрии окружности на сфере являются аналогом окружностей в плоской геометрии...
Трубчатая окрестность подмногообразия в многообразии — это открытое множество, окружающее подмногообразие и локально устроенное подобно нормальному расслоению.
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
Центрированное квадратное число — это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки, находящиеся на квадратных слоях.
В визуализации графов и геометрической теории графов число наклонов графа — это минимальное возможное число различных коэффициентов наклона рёбер в рисунке графа, в котором вершины представляются точками евклидовой плоскости, а рёбрами являются отрезки, которые не проходят через вершины, неинцидентные этим рёбрам.
Подробнее: Число наклонов графа
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
Четырёхугольник Саккери — четырёхугольник с двумя равными сторонами, которые перпендикулярны основанию. Он назван в честь Саккери, который использовал его в своей книге Euclides ab omni naevo vindicatus, впервые опубликованой в 1733, при попытке доказать пятый постулат, используя метод от противного. В конце 11 века четырёхугольник Саккери был рассмотрен Омар Хайямом.В четырёхугольнике Саккери ABCD стороны AD и BC равны по длине и перпендикулярны к основанию АВ. Углы при С и D называются верхними...
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом.
Пра́вильный шестисотяче́йник, или просто шестисотяче́йник, или гекзакосихор (от др.-греч. ἑξἀκόσιοι — «шестьсот» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве. Двойственен стодвадцатиячейнику.
Подробнее: Шестисотячейник
Семиуго́льник , называемый иногда гептагон — многоугольник с семью углами. Семиугольником также называют всякий предмет такой формы.
Полупростые модули (вполне приводимые модули) — общеалгебраические модули, которые можно легко восстановить по их частям. Кольцо, являющееся полупростым модулем над самим собой, называется артиновым полупростым кольцом. Важный пример полупростого кольца — групповое кольцо конечной группы над полем характеристики ноль. Структура полупростых колец описывается теоремой Веддербёрна — Артина: все такие кольца являются прямыми произведениями колец матриц.
Подробнее: Полупростой модуль
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Пра́вильный стодвадцатияче́йник, или просто стодвадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гекатоникосахор (от др.-греч. ἑκατόν — «сто», εἴκοσι — «двадцать» и χώρος — «место, пространство»), гипердодека́эдр (поскольку является четырёхмерным аналогом додекаэдра), додекаплекс (то есть «комплекс додекаэдров»), полидодека́эдр. Двойственен шестисотячейнику.
Подробнее: Стодвадцатиячейник
Теорема Кейси или Кэзи — теорема в евклидовой геометрии, обобщающая неравенство Птолемея. Названа по имени ирландского математика Джона Кейси.
Задача одной плитки (англ. einstein problem) — геометрическая проблема, ставящая вопрос о существовании одной протоплитки, которая образует непериодическое множество плиток, то есть о существовании фигуры, копиями которой можно замостить пространство, но только непериодичным способом. В источниках на английском языке такие фигуры называют «einsteins» — игра слов, нем. ein stein означает «один камень», и так же записывается фамилия физика Альберта Эйнштейна. В зависимости от конкретного определения...
Гипе́рбола Ки́перта — гипербола, определяемая по данному треугольнику. Если последний представляет собой треугольник общего положения, то эта гипербола является единственным коническим сечением, проходящим через его вершины, ортоцентр и центроид.
Икосианы — это некоммутативная алгебраическая система, обнаруженная ирландским математиком Уильямом Роуэном Гамильтоном в 1856 году. В современной терминологии он нашёл задание группы вращений икосаэдра с помощью генераторов и связей.