Связанные понятия
Обобщённая задача коммивояжёра — задача комбинаторной оптимизации, являющаяся обобщением хорошо известной задачи коммивояжёра. Исходными данными для задачи является множество вершин, разбиение этого множества на так называемые кластеры, а также матрица стоимостей перехода из одной вершины в другую. Задача заключается в нахождении кратчайшего замкнутого пути, который бы посетил по одной вершине в каждом кластере (существует также модификация, когда путь должен посетить хотя бы по одной вершине в каждом...
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
Квадрати́чная зада́ча о назначе́ниях (КЗН, англ. Quadratic assignment problem, QAP) — одна из фундаментальных задач комбинаторной оптимизации в области оптимизации или исследования операций, принадлежащая категории задач размещения объектов.
Обучение с ошибками в кольце (англ. Ring learning with errors, RLWE)— это вычислительная задача, которая была сформулирована как вариант более общей задачи обучения с ошибками (с англ. LWE), с целью использовать преимущество дополнительной алгебраической структуры (т.е. кольца многочленов) из теории решеток, что дало возможность повысить и расширить возможности шифрования тех криптографических приложений, которые ранее основывались на LWE. Задача RLWE стала основой новых криптографических алгоритмов...
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Задача проверки планарности — это алгоритмическая задача проверки, является ли данный граф планарным (то есть, может ли он быть нарисован на плоскости без пересечения рёбер). Задача хорошо изучена в информатике и для неё было придумано много практических алгоритмов, многие из которых используют современные структуры данных. Большинство этих методов работают за время O(n) (линейное время), где n — число рёбер (или вершин) графа, что является асимптотически оптимальным алгоритмом. Вместо простого булевского...
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
В теории вычислительной сложности сложность алгоритма в среднем — это количество неких вычислительных ресурсов (обычно — время), требуемое для работы алгоритма, усреднённое по всем возможным входным данным. Понятие часто противопоставляется сложности в худшем случае, где рассматривается максимальная сложность алгоритма по всем входным данным.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Ансамбль методов в статистике и обучении машин использует несколько обучающих алгоритмов с целью получения лучшей эффективности прогнозирования, чем могли бы получить от каждого обучающего алгоритма по отдельности.
В математике методы проверки на простоту с помощью эллиптических кривых (англ. - Elliptic Curve Primality Proving, сокр. ЕСРР) являются одними из самых быстрых и наиболее широко используемых методов проверки на простоту . Эту идею выдвинули Шафи Гольдвассер и Джо Килиан в 1986 году; она была превращена в алгоритм А.О.Л. Аткином в том же году. Впоследствии алгоритм был несколько раз изменён и улучшен, в особенности Аткином и François Morain в 1993. Концепция использования факторизации с помощью эллиптических...
Подробнее: Тест простоты с использованием эллиптических кривых
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Задача о покрытии множества является классическим вопросом информатики и теории сложности. Данная задача обобщает NP-полную задачу о вершинном покрытии (и потому является NP-сложной). Несмотря на то, что задача о вершинном покрытии сходна с данной, подход, использованный в приближённом алгоритме, здесь не работает. Вместо этого мы рассмотрим жадный алгоритм. Даваемое им решение будет хуже оптимального в логарифмическое число раз. С ростом размера задачи качество решения ухудшается, но всё же довольно...
Граф алгоритма — ориентированный граф, состоящий из вершин, соответствующих операциям алгоритма, и направленных дуг, соответствующих передаче данных (результаты одних операций передаются в качестве аргументов другим операциям) между ними. Не следует путать его с графом управления программы и тем более с её блок-схемой.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Задача разбиения множества чисел — это задача определения, можно ли данное мультимножество S положительных целых чисел разбить на два подмножества S1 и S2, таких, что сумма чисел из S1 равна сумме чисел из S2. Хотя задача разбиения чисел является NP-полной, существует решение псевдополиномиального времени методом динамического программирования существуют эвристические алгоритмы решения для многих конкрентных задач либо оптимально, либо приближённо. По этой причине задачу называют "простейшей NP-трудной...
Суперкомпиляция , или метакомпиляция, — специальная техника оптимизации алгоритмов, основанная на знании конкретных входных данных алгоритма. Суперкомпилятор принимает исходный код алгоритма плюс некоторые данные о входных параметрах и возвращает новый исходный код, который исполняет свою задачу на этих данных быстрее или является лучше исходного алгоритма по каким-то другим показателям. Очень часто под суперкомпиляцией неверно понимают глобальную оптимизацию программы, то есть эквивалентные преобразования...
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Полный перебор (или метод «грубой силы», англ. brute force) — метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
В теории графов и комбинаторной оптимизации двудольная размерность или число бикликового покрытия графа G = (V, E) — это минимальное число биклик (то есть полных двудольных подграфов), необходимых, чтобы покрыть всё рёбра E. Набор биклик, покрывающих все рёбра в G, называется бикликовым покрытием рёбер, или просто бикликовым покрытием. Двудольная размерность графа G часто обозначается символом d(G).
Подробнее: Двудольная размерность
В информатике временна́я сложность алгоритма определяет время работы, используемое алгоритмом, как функции от длины строки, представляющей входные данные . Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая исключает коэффициенты и члены меньшего порядка. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, т.е. при стремлении размера входа к бесконечности. Например, если время, которое нужно алгоритму для выполнения...
Подробнее: Временная сложность алгоритма
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Цикломати́ческая сло́жность програ́ммы (англ. cyclomatic complexity of a program) — структурная (или топологическая) мера сложности компьютерной программы. Мера была разработана Томасом Дж. Маккейбом в 1976 году.
Задача о размещении объектов , известная также как анализ расположения оборудования или задача k-центра, — это ветвь исследования операций и вычислительной геометрии, исследующей оптимальное расположение объектов с целью минимизировать цены перевозок с учётом таких ограничений, как размещение опасных материалов вблизи жилищ. Техника применима также к кластерному анализу.
Алгори́тм (лат. algorithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться...
Вероятностно приблизительно корректное обучение (ВПК обучение, англ. Probably Approximately Correct learning, (PAC learning) в теории вычислительного обучения — это схема математического анализа машинного обучения. Схему предложил в 1984 Лесли Вэлиант.
Постепенная оптимизация — это техника глобальной оптимизации, которая пытается решить трудную задачу оптимизации путём решения сначала сильно упрощённой задачи с последовательным преобразованием этой задачи, пока она не станет эквивалентна исходной трудной оптимизационной задаче.
Универса́льное хеши́рование (англ. Universal hashing) — это вид хеширования, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму. Такой подход обеспечивает равномерное хеширование: для очередного ключа вероятности помещения его в любую ячейку совпадают. Известно несколько семейств универсальных хеш-функций, которые имеют многочисленные применения в информатике, в частности в хеш-таблицах, вероятностных алгоритмах и криптографии...
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод
Универсальный решатель задач (англ. General Problem Solver, GPS) — компьютерная программа, созданная в 1959 году Гербертом Саймоном, Клиффордом Шоу (англ. Cliff Show) и Алленом Ньюэллом, предназначенная для работы в качестве универсальной машины для решения задач, сформулированных на языке хорновских дизъюнктов. В качестве примеров использования приводились доказательства теорем евклидовой геометрии и логики предикатов, решение шахматных задач.
Алгоритм Британского музея заключается в переборе всех возможных вариантов, начиная с самого маленького по размеру, пока верное решение не будет найдено. Данный алгоритм почти не применим на практике, являясь лишь принципом, в теории применимым к любой задаче с большим числом возможных вариантов.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Задача о назначениях — одна из фундаментальных задач комбинаторной оптимизации в области математической оптимизации или исследовании операций. Задача состоит в поиске минимальной суммы дуг во взвешенном двудольном графе.
Матема́тика ку́бика Ру́бика — совокупность математических методов для изучения свойств кубика Рубика с абстрактно-математической точки зрения. Эта математика изучает алгоритмы сборки кубика и оценивает их. Основана на теории графов, теории групп, теории вычислимости и комбинаторике.
Дробно-линейное программирование (ДЛП) — математическая дисциплина, посвящённая теории и методам решения задач об экстремумах отношений линейных функций на множествах n-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.
Задача о рюкзаке (или задача о ранце) — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Криптосистема Джентри (от фамилии создателя Крейга Джентри) — первая возможная конструкция для полностью гомоморфной криптосистемы, основанная на криптографии на решетках. Впервые была предложена Крейгом Джентри в 2009 году и являлась темой его докторской диссертации. Схема Джентри поддерживает операции сложения и умножения над шифротекстом, что позволяет построить кольца для реализации любых произвольных вычислений. Впоследствии имела множество доработок и модификаций с целью улучшения её производительности...
Задача коммивояжёра (англ. Travelling salesman problem, сокращённо TSP) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что...
Зада́ча о кратча́йшем пути ́ — задача поиска самого короткого пути (цепи) между двумя точками (вершинами) на графе, в которой минимизируется сумма весов рёбер, составляющих путь.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
В криптографии обмен ключами при обучении с ошибками — криптографический алгоритм, позволяющий двум сторонам создавать и обмениваться секретным ключом, который они используют для шифрования сообщений между собой. RLWE-KEX (англ. Ring Learning with Errors Key Exchange) является одним из алгоритмов с открытым ключом, который предназначен для защиты от противника, обладающего квантовым компьютером. Это важно, потому что криптографические системы с открытым ключом, широко используемые сегодня, легко...
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.