Связанные понятия
Теория субъективной ожидаемой полезности — одно из ответвлений современной теории полезности или теории принятия решений, была предложена Леонардом Сэвиджем в 1954 г. В своих научных поисках Сэвидж опирался на исследования предшественников, в частности Дж. фон Неймана и О. Моргенштерна, которые разработали теорию ожидаемой полезности.
Ординалистская (порядковая) теория полезности основывается на том, что предпочтения индивидуума относительно предлагаемых к выбору альтернатив не могут измеряться количественно, а только сравниваться, то есть одна альтернатива хуже или лучше другой. Альтернативой данной теории является кардиналистская (количественная) теория полезности.
Тео́рия приня́тия реше́ний — область исследования, вовлекающая понятия и методы математики, статистики, экономики, менеджмента и психологии с целью изучения закономерностей выбора людьми путей решения проблем и задач, а также способов достижения желаемого результата.
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Общая теория полезности – попытка существенного обобщения большинства классических и современных теорий, связывающих понятие полезности с принятием решений в условиях неопределенности.
Тео́рия рациона́льных ожида́ний (англ. Rational expectations theory) (сокращенно — ТРО) — концепция макроэкономики, изначально разработанная Джоном Ф. Мутом в 1961 году и развитая Робертом Лукасом в середине 1970-х годов (за которую Лукасу в 1995 году была присвоена Нобелевская премия по экономике), а также Кристофером Симсом и Томасом Сарджентом (им была присуждена Нобелевская премия по экономике "за эмпирическое исследование причинно-следственных связей в макроэкономике").
Проблема Гальтона , названная в честь сэра Фрэнсиса Гальтона, представляет собой проблему выведения заключений из кросс-культурных данных на основании статистического феномена, известного на сегодняшний день как сетевая автокорреляция. В настоящее время проблема признается проблемой общего характера, которая применяется ко всем неэкспериментальным исследованиям, а также к экспериментальному проектированию. Ее можно наиболее просто описать как проблему внешних зависимостей при проведении статистических...
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
В экономической науке, теории игр, теории принятия решений теория ожидаемой полезности — альтернатива математическому ожиданию, формула, которая может использоваться рациональным игроком при принятии решений.
Подробнее: Теория ожидаемой полезности
Эконометрика — наука, изучающая количественные и качественные экономические взаимосвязи с помощью математических и статистических методов и моделей. Современное определение предмета эконометрики было выработано в уставе Эконометрического общества, которое главными целями назвало использование статистики и математики для развития экономической теории. Теоретическая эконометрика рассматривает статистические свойства оценок и испытаний, в то время как прикладная эконометрика занимается применением эконометрических...
Математическая экономика — сфера теоретической и прикладной научной деятельности, целью которой является математически формализованное описание экономических объектов, процессов и явлений. Наряду с простейшими геометрическими методами в рамках математической экономики применяется инструментарий интегрального и дифференциального исчисления, матричной алгебры, математического программирования, прочие вычислительные методы, составляются и решаются рекуррентные и дифференциальные уравнения.
Информационный критерий — применяемая в эконометрике (статистике) мера относительного качества эконометрических (статистических) моделей, учитывающая степень «подгонки» модели под данные с корректировкой (штрафом) на используемое количество оцениваемых параметров. То есть критерии основаны на неком компромиссе между точностью и сложностью модели. Критерии различаются тем, как они обеспечивают этот баланс.
История теории вероятностей отмечена многими уникальными особенностями. Прежде всего, в отличие от появившихся примерно в то же время других разделов математики (например, математического анализа или аналитической геометрии), у теории вероятностей по существу не было античных или средневековых предшественников, она целиком — создание Нового времени. Долгое время теория вероятностей считалась чисто опытной наукой и «не совсем математикой», её строгое обоснование было разработано только в 1929 году...
Выбор модели — это задача выбора статистической модели из набора моделей-кандидатов по имеющимся данным. В простейшем случае рассматривается существующий набор данных. Однако задача может вовлекать планирование экспериментов, так что сбор данных связан с задачей выбора модели. Если заданы кандидаты в модели с одинаковой силой предсказания или объяснения, наиболее простая модель скорее всего будет лучшим выбором (бритва Оккама).
Шкала (измерительная шкала) — это знаковая система, для которой задано отображение (операция измерения), ставящее в соответствие реальным объектам (событиям) тот или иной элемент (значение) шкалы. Формально шкалой называют кортеж,
, где X — множество реальных объектов (событий), φ — отображение, Y — множество элементов (значений) знаковой системы.
Закон Парето (принцип Парето, принцип 80/20) — эмпирическое правило, названное в честь экономиста и социолога Вильфредо Парето, в наиболее общем виде формулируется как «20 % усилий дают 80 % результата, а остальные 80 % усилий — лишь 20 % результата». Может использоваться как базовая установка в анализе факторов эффективности какой-либо деятельности и оптимизации её результатов: правильно выбрав минимум самых важных действий, можно быстро получить значительную часть от планируемого полного результата...
Минимизация эмпирического риска (МЭР, англ. Empirical risk minimization, ERM) — это принцип статистической теории обучения, который определяет семейство алгоритмов обучения и который задаёт теоретические границы производительности.
Теория возможностей — математическая теория, имеющая дело с особым типом неопределенности, альтернативна теории вероятностей. Профессор Лотфи Заде (Lotfi Zadeh) впервые ввел теорию возможностей в 1978 году в качестве расширения его теорий нечётких множеств и нечёткой логики. Д. Дюбуа (D. Dubois) и Г. Праде (H. Prade) позже внесли свой вклад в её развитие. Раньше, в 1950-х годах экономист Дж. Шекл предложил min/max-алгебру для описания степени потенциальных неожиданностей. В конце 1990-х годов профессор...
Информационный критерий Акаике (AIC) — критерий, применяющийся исключительно для выбора из нескольких статистических моделей. Разработан в 1971 как «an information criterion» («(некий) информационный критерий») Хироцугу Акаике и предложен им в статье 1974 года.
Фидуциальный вывод (от лат. fides: вера, доверие), как разновидность статистического вывода, был впервые предложен сэром Р. Э. Фишером.
Цензурированная регрессия (англ. Censored regression) — регрессия, с зависимой переменной, наблюдаемой с ограничением (цензурированием) возможных значений. При этом модель может быть цензурирована только с одной стороны (снизу или сверху) или с обеих сторон. Цензурированная регрессия отличается от усеченной регрессии (англ. truncated regression), тем что значения факторов, в отличие от зависимой переменной, наблюдаются без ограничений.
Теория перспектив — экономическая теория, описывающая поведение людей при принятии решений, связанных с рисками. Эта теория описывает то, как люди выбирают между альтернативами, вероятности различных исходов в которых известны. Каждый возможный исход имеет определенную вероятность возникновения и ценность, которую человек определяет субъективным образом. Ценности могут быть как положительными, так и отрицательными. Во втором случае ценности являются для человека потерями. Теория перспектив делает...
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Теоретическая выборка (англ. theoretical sampling), или теоретический отбор — процесс сбора данных для теории, когда аналитик одновременно собирает, кодирует, анализирует и сравнивает свои данные между собой. Он также решает, какие данные собирать дальше и где их искать, чтобы развивать свою теорию по мере ее возникновения . Исследователь выбирает какую-либо общую проблемную область и начинает с определения некоторых ключевых понятий и особенностей, которые будут им анализироваться. При этом важно...
Методы прогнозирования в экономике — это совокупность научных методик, которые используются специалистами для разработки оптимальных алгоритмов дальнейшего развития различных сфер экономики каждого конкретного государства или мировой экономики в целом.
Подробнее: Экономическое прогнозирование
Прикладные исследования — научные исследования, направленные на практическое решение технических и социальных проблем.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Некоторые модели человеческого поведения в общественных науках предполагают, что поведение людей может быть описано в предположении, что люди ведут себя как «рациональные» существа (смотри, например, теорию рационального выбора). Во многих экономических моделях полагается, что люди гиперрациональны и никогда не делают чего бы то ни было, что противоречит их интересам. Концепция ограниченной рациональности подвергает эти положения сомнению с целью учесть, что в действительности совершенно рациональные...
Подробнее: Ограниченная рациональность
Выявленное предпочтение — предпочтение, информация о котором получена в результате наблюдения за поведением экономического агента. Концепция выявленных предпочтений — это один из методов моделирования потребительского поведения в условиях определённости, который был предложен в 1938 году американским экономистом Полом Самуэльсоном. Метод основан на том, что у агентов имеются определённые устойчивые предпочтения, в соответствии с которыми они осуществляют выбор.
Подробнее: Выявленные предпочтения
Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.
Гипотеза совокупных рациональных ожиданий (Ensemble Rational Expectations Hypothesis) гласит, что совокупность всех ожиданий рациональных агентов распределяется относительно теоретического значения . Впервые была предложена Джоном Фрейзером Мутом (John Fraser Muth ) в 1961 году.
Кривая безразличия — множество всевозможных комбинаций благ, имеющих для потребителя одинаковую полезность и по отношению к выбору которых он безразличен. В простейшем двумерном случае кривую безразличия часто изображают на плоскости в виде выпуклой (к началу координат) линии. Однако кривая имеет такой вид лишь при выполнении ряда условий (см. свойства). Понятие кривой безразличия восходит к Фрэнсису Эджуорту и Вильфредо Парето.
Обработка аналитических иерархий (Analytic Hierarchy Process, AHP) — структурированная техника принятия комплексных решений (en:MCDA). Она не дает ответа на вопрос, что правильно, а что нет, но позволяет человеку, принимающему решение, оценить, какой из рассматриваемых им вариантов лучше всего удовлетворяет его нуждам и его...
Подробнее: Аналитический иерархический процесс
Авторегрессионная условная гетероскедастичность (англ. ARCH; AutoRegressive Conditional Heteroscedasticity) — применяемая в эконометрике модель для анализа временных рядов (в первую очередь финансовых), у которых условная (по прошлым значениям ряда) дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время...
Неопределённость — отсутствие или недостаток определения или информации о чём-либо.
Логическая вероятность — логическое отношение между двумя предложениями, степень подтверждения гипотезы H свидетельством E.
Шкала Гуттмана (названа в честь Луиса Гуттмана, eng.Guttman scale/scalp gram) — измерительная шкала, принимающая за основу одномерность и то, что, суждения в анкете иерархически связаны между собой.
Модели́рование — исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.
Стати́стика — отрасль знаний, наука, в которой излагаются общие вопросы сбора, измерения, мониторинга и анализа массовых статистических (количественных или качественных) данных; изучение количественной стороны массовых общественных явлений в числовой форме.
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
В теории массового обслуживания, разделе теории вероятностей, законом Литтла (англ. Little's law, также результатом, леммой, формулой Литтла) называют сформулированную американским учёным Джоном Литтлом теорему...
Подробнее: Закон Литтла
Фармакоэкономика — новая самостоятельная наука, которая изучает в сравнительном плане соотношение между затратами и эффективностью, безопасностью, качеством жизни при альтернативных схемах лечения (профилактики) заболевания.
Моде́ль (фр. modèle от лат. modulus «мера, аналог, образец») — это система, исследование которой служит средством для получения информации о другой системе; представление некоторого реального процесса, устройства или концепции.
Планирование эксперимента — один из важнейших этапов организации психологического исследования, на котором исследователь пытается сконструировать наиболее оптимальную для воплощения на практике модель (то есть план) эксперимента.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Ансамбль методов в статистике и обучении машин использует несколько обучающих алгоритмов с целью получения лучшей эффективности прогнозирования, чем могли бы получить от каждого обучающего алгоритма по отдельности.