Связанные понятия
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Теорема Бека — это один из нескольких результатов комбинаторной геометрии, два из которых приведены ниже.
Задача со счастливым концом — утверждение о том, что любое множество из пяти точек на плоскости в общем положении имеет подмножество из четырёх точек, которые являются вершинами выпуклого четырёхугольника.
Гипотеза Хивуда , или теорема Рингеля — Янгса даёт нижнюю границу для числа цветов, которые необходимы для раскраски графа на поверхности с заданным родом. Эта граница называется хроматическим числом поверхности или числом Хивуда. Для поверхностей рода 0, 1, 2, 3, 4, 5, 6, 7, ..., требуемое число цветов равно 4, 7, 8, 9, 10, 11, 12, 12, ....
Четырёхугольник Саккери — четырёхугольник с двумя равными сторонами, которые перпендикулярны основанию. Он назван в честь Саккери, который использовал его в своей книге Euclides ab omni naevo vindicatus, впервые опубликованой в 1733, при попытке доказать пятый постулат, используя метод от противного. В конце 11 века четырёхугольник Саккери был рассмотрен Омар Хайямом.В четырёхугольнике Саккери ABCD стороны AD и BC равны по длине и перпендикулярны к основанию АВ. Углы при С и D называются верхними...
В геометрии
теорема Декарта утверждает, что для любых трёх взаимно касающихся окружностей радиусы окружностей удовлетворяют некоторому квадратному уравнению. Решив это уравнение, можно построить четвёртую окружность, касающуюся остальных трёх заданных окружностей. Теорема названа в честь Рене Декарта, который сформулировал её в 1643 году.
Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры, неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок. Названа в честь Фрэнка Рамсея.
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
В математике кривая Осгуда — это самонепересекающаяся кривая (кривая или дуга Жордана) с положительной площадью. Более формально, это кривые на евклидовой плоскости с положительной двумерной мерой Лебега.
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
Теорема об уголках — доказанный результат в области аддитивной комбинаторики, утверждающий присутствие некой упорядоченной (в арифметическом смысле) структуры, называемой уголком, в достаточно больших двумерных множествах любой фиксированной плотности.
Точка округления (круговая точка, омбилическая точка или омбилика) ― точка на гладкой регулярной поверхности в евклидовом пространстве, в которой нормальные кривизны по всем направлениям равны.
В геометрии гипотеза Келлера — это высказанная Отт-Генрихом Келлером гипотеза о том, что в любой мозаике в евклидовом пространстве, состоящей из однинаковых гиперкубов, найдутся два куба, соприкасающиеся грань-к-грани. Например, как показано на рисунке, в любой мозаике на плоскости из одинаковых квадратов, какие-то два квадрата должны соприкасаться ребро-к-ребру. Перрон доказал, что это верно в размерностях до 6. Однако для больших размерностей это неверно, как показали Лагарис и Шор для размерностей...
Решение треугольников (лат. solutio triangulorum) — исторический термин, означающий решение главной тригонометрической задачи: по известным данным о треугольнике (стороны, углы и т. д.) найти остальные его характеристики. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.). Треугольник может располагаться на плоскости или на сфере. Данная задача часто встречается в тригонометрических приложениях, например...
Программа минимальных моделей — это часть бирациональной классификации алгебраических многообразий. Её цель — построение как можно более простой бирациональной модели любого комплексного проективного многообразия. Предмет основывается на классической бирациональной геометрии поверхностей, изучаемой итальянской школой и в настоящее время находящейся в активном изучении.
Вложение Татта или барицентричное вложение простого вершинно 3-связного планарного графа — вложение без пересечений с рёбрами в виде отрезков с дополнительными свойствами, что внешняя грань имеет выпуклый многоугольник в качестве границы и что каждая внутренняя вершина является геометрическим центром соседей. Если внешний многоугольник фиксирован, это условие на внутренние вершины определяет их положения однозначно как решение системы линейных уравнений. Решение уравнений даёт планарное вложение...
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Пра́вильный семнадцатиуго́льник — геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Среди других правильных многоугольников с больши́м (больше пяти) простым числом сторон интересен тем, что его можно построить при помощи циркуля и линейки (так, семи-, одиннадцати- и тринадцатиугольники построить циркулем и линейкой нельзя).
Приближение с помощью кривых — это процесс построения кривой или математической функции, которая наилучшим образом приближается к заданным точкам с возможными ограничениями на кривую . Для построения такого приближения может использоваться либо интерполяция , где требуется точное прохождение кривой через точки, либо сглаживание, когда «сглаживающая» функция проходит через точки приближённо. Связанный раздел — регрессионный анализ, который фокусируется, главным образом, на вопросах статистического...
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
Теорема Сарда — одна из теорем математического анализа, имеющих важные приложения в теории катастроф и теории динамических систем.Названа в честь американского математика Артура Сарда.
Теорема Брауэра о неподвижной точке — важная теорема о неподвижной точке, применимая к непрерывным отображениям в конечномерных пространствах, являющаяся основной для некоторых более общих теорем.
Теорема об упаковке кругов (известная также как теорема Кёбе — Андреева — Тёрстона) описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений (иногда называемый графом касаний) упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости (или, что эквивалентно, на сфере), то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки...
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Подробнее: Монодромия
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
Метод неделимых — возникшее в конце XVI века наименование совокупности приёмов, предназначенных для вычисления площадей геометрических фигур или объёмов геометрических тел.
Особая точка кривой — точка, в окрестности которой не существует гладкой параметризации. Точное определение зависит от типа изучаемой кривой.
Универсальное множество точек порядка n — это множество S точек евклидовой плоскости со свойством, что любой планарный граф с n вершинами имеет рисунок с прямыми рёбрами, в котором все вершины располагаются в точках множества S.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Задача об иголке состоит в определении минимальной площади фигуры на плоскости, в которой единичный отрезок, «иглу», можно развернуть на 180 градусов, вернув его в исходное положение с обращённой ориентацией.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Голигон — это любой многоугольник, в котором все углы прямые, а длины сторон являются последовательными целыми числами (от 1 до n). Голигоны придумал (и дал им название) Ли Сэллоус, а популяризовал Александр Дьюдени в колонке 1990 года в журнале Scientific American . Вариации определения голигонов позволяют сторонам пересекаться, иметь в качестве длин сторон любые целые числа (не обязательно последовательные) и иметь углы, отличные от 90°.
Контактное число (иногда число Ньютона, в химии соответствует координационному числу) — максимальное количество шаров единичного радиуса, которые могут одновременно касаться одного такого же шара в n-мерном евклидовом пространстве (предполагается, что шары не проникают друг в друга, то есть объём пересечения любых двух шаров равен нулю).
Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Геометрический остов (англ. geometric spanner) или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-Путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
Доска́ Га́льтона (англ. Galton board, также распространены названия квинкункс, quincunx и bean machine) — устройство, изобретённое английским учёным Фрэнсисом Гальтоном (первый экземпляр изготовлен в 1873 году, затем устройство было описано Гальтоном в книге Natural inheritance, изданной в 1889 году) и предназначающееся для демонстрации центральной предельной теоремы.
Четырёхугольник Ла́мберта , или трипрямоуго́льник, — четырёхугольник, в котором все стороны в общем случае криволинейны и имеющий при трёх его вершинах прямые углы.
Алгебраическая поверхность — это алгебраическое многообразие размерности два. В случае геометрии над полем комплексных чисел алгебраическая поверхность имеет комплексную размерность два (как комплексное многообразие, если оно неособо), а потому имеет размерность четыре как гладкое многообразие.