Связанные понятия
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры, неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.
Площадь круга с радиусом r равна πr2. Здесь символ π (греческая буква пи) обозначает константу, выражающую отношение длины окружности к её диаметру или площади круга к квадрату его радиуса. Поскольку площадь правильного многоугольника равна половине его периметра, умноженного на апофему (высоту), а правильные многоугольники стремятся к окружности при росте числа сторон, площадь круга равна половине длины окружности, умноженной на радиус (то есть 1⁄2 × 2πr × r).
Исчезновение клетки (появление клетки) — известный класс задач (оптических иллюзий) на перестановку фигур, обладающих признаками софизмов: изначально в их условие введена замаскированная ошибка. Некоторые из этих задач тесно связаны со свойствами последовательности чисел Фибоначчи.
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Куб принца Руперта (англ. Prince Rupert’s cube) — самый большой куб, который может пройти через отверстие, вырезанное в единичном кубе (то есть через куб, рёбра которого имеют размер 1). Ребро куба Руперта приблизительно на 6 % длиннее, чем ребро куба, через который он проходит. Задача поиска такого куба тесно связана с задачей поиска самого большего квадрата, который полностью расположен в пределах единичного куба, и имеет аналогичное решение.
Задача о наибольшем пустом прямоугольнике или задача о максимальном пустом прямоугольнике — это задача поиска прямоугольника максимального размера, который следует разместить среди препятствий на плоскости. Существует несколько вариантов задачи, в зависимости от особенностей формулировки, в частности, от способов измерения «размера», области (типы препятствий) и ориентации прямоугольника.
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
Задачи упаковки — это класс задач оптимизации в математике, в которых пытаются упаковать объекты в контейнеры. Цель упаковки — либо упаковать отдельный контейнер как можно плотнее, либо упаковать все объекты, использовав как можно меньше контейнеров. Многие из таких задач могут относиться к упаковке предметов в реальной жизни, вопросам складирования и транспортировки. Каждая задача упаковки имеет двойственную задачу о покрытии, в которой спрашивается, как много требуется некоторых предметов, чтобы...
Голигон — это любой многоугольник, в котором все углы прямые, а длины сторон являются последовательными целыми числами (от 1 до n). Голигоны придумал (и дал им название) Ли Сэллоус, а популяризовал Александр Дьюдени в колонке 1990 года в журнале Scientific American . Вариации определения голигонов позволяют сторонам пересекаться, иметь в качестве длин сторон любые целые числа (не обязательно последовательные) и иметь углы, отличные от 90°.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Задача Вебера обобщает поиск геометрической медианы, для которой цены перевозок полагаются равными для всех точек потребления, и задачу нахождения точки Ферма, геометрической медианы трёх точек. По этой причине задачу иногда называют задачей Ферма – Вебера, хотя то же самое имя используется и для задачи нахождения невзвешенной геометрической медианы. Задача Вебера, в свою очередь, обобщается задачей притяжения – отталкивания, которая позволяет отрицательные цены, так что для некоторых точек большее...
Треуго́льник Рёло ́ представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Негладкая замкнутая кривая, ограничивающая эту фигуру, также называется треугольником Рёло.
Полимино , или полиомино (англ. polyomino) — плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам. Это полиформы, сегменты которых являются квадратами.
Пери́метр (др.-греч. περίμετρον — окружность, др.-греч. περιμετρέο — измеряю вокруг) — общая длина границы фигуры (чаще всего на плоскости). Имеет ту же размерность величин, что и длина.
Окружности Мальфатти — три окружности внутри заданного треугольника, такие, что каждая окружность касается двух других и двух сторон треугольника. Окружности названы именем Джанфранческо Мальфатти, который начал исследовать задачу построения этих окружностей с ошибочным убеждением, что они в сумме дают максимальную возможную площадь трёх непересекающихся окружностей внутри треугольника. Задача Мальфатти относится к обеим задачам — как к построению окружностей Мальфатти, так и к задаче нахождения...
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
Октамино — восьмиклеточные полимино, то есть плоские фигуры, состоящие из восьми равных квадратов, соединённых сторонами. С фигурами октамино, как со всеми полимино, связано много задач занимательной математики.
Контактное число (иногда число Ньютона, в химии соответствует координационному числу) — максимальное количество шаров единичного радиуса, которые могут одновременно касаться одного такого же шара в n-мерном евклидовом пространстве (предполагается, что шары не проникают друг в друга, то есть объём пересечения любых двух шаров равен нулю).
У́гол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла).
Многоугольник видимости или область видимости для точки p на плоскости среди препятствий — это (возможно неограниченная) многоугольная область всех точек плоскости, видимых из точки p. Многоугольник видимости можно определить для видимости из отрезка или многоугольника. Многоугольники видимости полезны в робототехнике, компьютерных играх и для определения позиций объектов, например, для определеиня наилучшего расположения охраны в картинных галереях.
Алгоритм Брезенхе́ма (англ. Bresenham's line algorithm) — это алгоритм, определяющий, какие точки двумерного растра нужно закрасить, чтобы получить близкое приближение прямой линии между двумя заданными точками. Это один из старейших алгоритмов в машинной графике — он был разработан Джеком Элтоном Брезенхэмом (англ. Jack Elton Bresenham) в компании IBM в 1962 году. Алгоритм широко используется, в частности, для рисования линий на экране компьютера. Существует обобщение алгоритма Брезенхэма для построения...
Пра́вильный семнадцатиуго́льник — геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Среди других правильных многоугольников с больши́м (больше пяти) простым числом сторон интересен тем, что его можно построить при помощи циркуля и линейки (так, семи-, одиннадцати- и тринадцатиугольники построить циркулем и линейкой нельзя).
Задача коммивояжёра (англ. Travelling salesman problem, сокращённо TSP) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что...
В математике кривая Осгуда — это самонепересекающаяся кривая (кривая или дуга Жордана) с положительной площадью. Более формально, это кривые на евклидовой плоскости с положительной двумерной мерой Лебега.
В геометрии гипотеза Келлера — это высказанная Отт-Генрихом Келлером гипотеза о том, что в любой мозаике в евклидовом пространстве, состоящей из однинаковых гиперкубов, найдутся два куба, соприкасающиеся грань-к-грани. Например, как показано на рисунке, в любой мозаике на плоскости из одинаковых квадратов, какие-то два квадрата должны соприкасаться ребро-к-ребру. Перрон доказал, что это верно в размерностях до 6. Однако для больших размерностей это неверно, как показали Лагарис и Шор для размерностей...
Универсальное множество точек порядка n — это множество S точек евклидовой плоскости со свойством, что любой планарный граф с n вершинами имеет рисунок с прямыми рёбрами, в котором все вершины располагаются в точках множества S.
Метод шаров и перегородок (англ. stars and bars — букв. «звёздочки и чёрточки») — это графический метод для вывода некоторых комбинаторных теорем. Метод популяризировал Уильям Феллер в его классической книге по теории вероятностей. Метод может быть использован для решения многих простых задач подсчёта, таких как «сколькими способами можно разложить n неразличимых шаров по k различимым ящикам».
Гептамино — семиклеточное полимино, то есть плоская фигура, состоящая из семи равных квадратов, соединённых сторонами. С фигурами гептамино, как со всеми полимино, связано много задач занимательной математики.
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
Приближение с помощью кривых — это процесс построения кривой или математической функции, которая наилучшим образом приближается к заданным точкам с возможными ограничениями на кривую . Для построения такого приближения может использоваться либо интерполяция , где требуется точное прохождение кривой через точки, либо сглаживание, когда «сглаживающая» функция проходит через точки приближённо. Связанный раздел — регрессионный анализ, который фокусируется, главным образом, на вопросах статистического...
Отображе́ние пе́каря — нелинейное отображение единичного квадрата на себя, которое демонстрирует хаотическое поведение.
Трисекция угла — задача о делении заданного угла на три равные части построением циркулем и линейкой.
В геометрии число Хееша фигуры — это максимальное число слоёв копий той же фигуры, которые могут её окружать. Задача Хееша — это задача определения набора чисел, которые могут быть числами Хееша. И то, и другое названы именем немецкого геометра Генриха Хееша , который нашёл мозаику с числом Хееша 1 (объединение квадрата, правильного треугольника и треугольника с углами 30-60-90) и предложил более общую задачу.
Вложение Татта или барицентричное вложение простого вершинно 3-связного планарного графа — вложение без пересечений с рёбрами в виде отрезков с дополнительными свойствами, что внешняя грань имеет выпуклый многоугольник в качестве границы и что каждая внутренняя вершина является геометрическим центром соседей. Если внешний многоугольник фиксирован, это условие на внутренние вершины определяет их положения однозначно как решение системы линейных уравнений. Решение уравнений даёт планарное вложение...
Центр подобия (или центр гомотетии) — это точка, из которой по меньшей мере две геометрически подобные фигуры можно видеть как масштабирование (растяжение/сжатие) друг друга. Если центр внешний, две фигуры похожи друг на друга прямо — их углы одни и те же в смысле вращения. Если центр внутренний, две фигуры являются изменёнными в размерах отражениями друг друга — их углы противоположны.
В вычислительной геометрии и планировании движений роботов граф видимости — это граф взаимной видимости точек пространства, обычно для множества точек и преград на евклидовой плоскости. Любая вершина в графе представляет точку пространства, а любое ребро представляет прямую видимость между точками. То есть, если отрезок прямой, соединяющий две точки пространства, не проходит через какую-либо преграду, в графе будет нарисовано ребро. Если множество точек пространства лежит на прямой, их можно понимать...
Подробнее: Граф видимости
Парадокс береговой линии — противоречивое наблюдение в географических науках, связанное с невозможностью точно определить длину линии побережья из-за её фракталоподобных свойств. Первое задокументированное описание данного феномена было сделано Льюисом Ричардсоном; впоследствии оно было расширено Бенуа Мандельбротом.
Гексамино — шестиклеточное полимино, то есть плоская фигура, состоящая из шести равных квадратов, соединённых сторонами. С фигурами гексамино, как со всеми полимино, связано много задач занимательной математики.
Трилатерация (от лат. trilaterus — трёхсторонний) — метод определения положения геодезических пунктов путём построения на местности системы смежных треугольников, в которых измеряются длины их сторон.
Задача со счастливым концом — утверждение о том, что любое множество из пяти точек на плоскости в общем положении имеет подмножество из четырёх точек, которые являются вершинами выпуклого четырёхугольника.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Зада́ча Кобо́на о треуго́льниках — нерешённая задача комбинаторной геометрии, сформулированная Кодзабуро Фудзмурой (яп. 藤村幸三郎 фудзимура ко:дзабуро:), известным также как Кобон. В задаче спрашивается, каково максимальное число N(k) неперекрывающихся треугольников, стороны которых принадлежат конфигурации k прямых. Вариант задачи рассматривается в проективной плоскости, а не в евклидовой плоскости, и в этом случае требуется, чтобы треугольники не пересекались другими прямыми конфигурации.
В евклидовой геометрии
пересечение двух прямых может быть пустым множеством, точкой или прямой. Различение этих случаев и поиск точки пересечения используется, например, в компьютерной графике, при планировании движения и для обнаружения столкновений.