Связанные понятия
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Ме́тод А́дамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие от метода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
Правило Рунге — правило оценки погрешности численных методов, было предложено К. Рунге в начале 20 века.Основная идея (для методов Рунге-Кутты решения ОДУ) состоит в вычислении приближения выбранным методом с шагом h, а затем с шагом h/2, и дальнейшем рассмотрении разностей погрешностей для этих двух вычислений.
Метод Ньютона , алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован...
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Метод обратного распространения ошибки (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С.И. Барцевым и В.А. Охониным (Красноярская группа). Это итеративный градиентный алгоритм, который используется...
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Метод Стронгина — метод решения одномерных задач условной липшицевой оптимизации. Позволяет находить глобально оптимальное решение в задачах с ограничениями неравенствами при условии, что целевая функция задачи и левые части неравенств удовлетворяют условию Липшица в области поиска.
Байесовский подход в филогенетике позволяет получить наиболее вероятное филогенетическое дерево при заданных исходных данных, последовательностях ДНК или белков рассматриваемых организмов и эволюционной модели замен. Для снижения вычислительной сложности алгоритма расчёт апостериорной вероятности реализуется различными алгоритмами, использующими метод Монте-Карло для марковских цепей. Главными преимуществами байесовского подхода по сравнению с методами максимального правдоподобия и максимальной экономии...
Метод группового учёта аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Жёсткой системой обыкновенных дифференциальных уравнений (ОДУ) называется (нестрого говоря) такая система ОДУ, численное решение которой явными методами (например, методами Рунге — Кутты или Адамса) является неудовлетворительным из-за резкого увеличения числа вычислений (при малом шаге интегрирования) или из-за резкого возрастания погрешности (так называемого, взрыва погрешности) при недостаточно малом шаге. Для жёстких систем характерно то, что для них неявные методы дают лучший результат, обычно...
Подробнее: Жёсткая система
Ме́тод Чаплы́гина (также известен как метод двухсторонних приближений) — метод приближённого решения дифференциальных уравнений с заданной степенью точности, который был предложен С. А. Чаплыгиным и основывается на теореме Чаплыгина. Метод предназначен для решения задачи Коши для системы ОДУ первого порядка (либо для одного ОДУ порядка выше первого) и состоит в построении двух семейств барьерных решений, последовательно приближающихся к точному решению системы.
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Слепая деконволюция — метод восстановления изображения без априорной информации о функции размытия точки оптической системы, которая вносит в регистрируемый полезный сигнал шум, искажения и т. п.
Интегральный криптоанализ — метод криптоанализа, объединяющий ряд атак на симметричные блочные криптографические алгоритмы. В отличие от дифференциального криптоанализа, который рассматривает воздействие алгоритма на пару открытых текстов, интегральный криптоанализ подразумевает исследование отображения в шифротекст множества открытых текстов. Впервые применен в 1997 Ларсом Кнудсеном.
Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Подробнее: Симплекс-метод
Алгоритм «прямого-обратного» хода — алгоритм для вычисления апостериорных вероятностей последовательности состояний при наличии последовательности наблюдений. Иначе говоря, алгоритм, вычисляющий вероятность специфической последовательности наблюдений. Алгоритм применяется в трёх алгоритмах скрытых Марковских моделей.
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
Операционное исчисление — один из методов математического анализа, позволяющий в ряде случаев с помощью простых средств решать сложные математические задачи.
Метод спектрального элемента (МСЭ) для решения дифференциальных уравнений в частных производных — это метод конечных элементов, в котором используются кусочные многочлены высокой степени в качестве базисных функций. Метод спектрального элемента предложил в статье 1984 года Т. Патера.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
В математике методы проверки на простоту с помощью эллиптических кривых (англ. - Elliptic Curve Primality Proving, сокр. ЕСРР) являются одними из самых быстрых и наиболее широко используемых методов проверки на простоту . Эту идею выдвинули Шафи Гольдвассер и Джо Килиан в 1986 году; она была превращена в алгоритм А.О.Л. Аткином в том же году. Впоследствии алгоритм был несколько раз изменён и улучшен, в особенности Аткином и François Morain в 1993. Концепция использования факторизации с помощью эллиптических...
Подробнее: Тест простоты с использованием эллиптических кривых
Метод внутренней точки — это метод позволяющий решать задачи выпуклой оптимизации с условиями, заданными в виде неравенств, сводя исходную задачу к задаче выпуклой оптимизации.
Вычислительная гидродинамика (также CFD от англ. computational fluid dynamics) — подраздел механики сплошных сред, включающий совокупность физических, математических и численных методов, предназначенных для вычисления характеристик потоковых процессов.
Фи́льтр Ка́лмана — эффективный рекурсивный фильтр, оценивающий вектор состояния динамической системы, используя ряд неполных и зашумленных измерений. Назван в честь Рудольфа Калмана.
Таблица поиска (англ. lookup table) — это структура данных, обычно массив или ассоциативный массив, используемая с целью заменить вычисления на операцию простого поиска. Увеличение скорости может быть значительным, так как получить данные из памяти зачастую быстрее, чем выполнить трудоёмкие вычисления.
Аппроксима́ция (от лат. proxima — ближайшая) или приближе́ние — научный метод, состоящий в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми.
Метод конечных разностей во временно́й области (англ. Finite Difference Time Domain, FDTD) — один из наиболее популярных методов численной электродинамики, основанный на дискретизации уравнений Максвелла, записанных в дифференциальной форме.
Атом Гука относится к искусственным атомам подобных атому гелия, в котором кулоновский электрон-ядерный потенциал взаимодействия...
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Метод инструментальных переменных (ИП, IV — Instrumental Variables) — метод оценки параметров регрессионных моделей, основанный на использовании дополнительных, не участвующих в модели, так называемых инструментальных переменных. Метод применяется в случае, когда факторы регрессионной модели не удовлетворяют условию экзогенности, то есть являются зависимыми со случайными ошибками. В этом случае, оценки метода наименьших квадратов являются смещенными и несостоятельными.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах
Квазиклассическое приближение , также известное как метод ВКБ (Вентцеля — Крамерса — Бриллюэна) — самый известный пример квазиклассического вычисления в квантовой механике, в котором волновая функция представлена как показательная функция, квазиклассически расширенная, а затем или амплитуда, или фаза медленно изменяются. Этот метод назван в честь физиков Г. Вентцеля, Х.А. Крамерса и Л. Бриллюэна, которые развили этот метод в 1926 году независимо друг от друга. В 1923 математик Гарольд Джеффри развил...
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Алгоритм динамической трансформации временно́й шкалы (DTW-алгоритм, от англ. dynamic time warping) — алгоритм, позволяющий найти оптимальное соответствие между временными последовательностями. Впервые применен в распознавании речи, где использован для определения того, как два речевых сигнала представляют одну и ту же исходную произнесённую фразу. Впоследствии были найдены применения и в других областях.