Спектральный метод

Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.

Спектральные методы и методы конечных элементов тесно связаны и построены на тех же идеях. Основное отличие заключается в том, что спектральные методы используют базисные функции, ненулевые над всей областью определения, в то время как методы конечных элементов используют базисные функции, которые не равны нулю только на маленьких подобластях. Другими словами, спектральные методы предпринимают глобальный подход, в то время как методы конечных элементов используют локальный подход. Отчасти по этой причине спектральные методы имеют превосходные свойства так называемой «экспоненциальной сходимости», которая наиболее быстрая из возможных, если решение является гладким. Однако не известно трёхмерного однообластного спектрального метода скозного счёта (ударная волна не гладкая). Метод конечных элементов, в котором степень элементов очень высока или возрастает при уменьшении параметра решётки h, иногда называется методом спектрального элемента.

Спектральные методы могут быть использованы для решения обыкновенных дифференциальных уравнений (ОДУ), дифференциальных уравнений в частных производных и задач нахождения собственных значений, вовлекающих дифференциальные уравнения. Когда спектральные методы применяются к зависимым от времени дифференциальным уравнениям в частных производных, решение обычно записывается как сумма базисных функций с зависящими от времени коэффициентами. Подстановка такой суммы в дифференциальное уравнение в частных производных даёт систему обыкновенных дифференциальных уравнений от коэффициентов, которая может быть решена с помощью любого численного метода обыкновенных дифференциальных уравнений. Задача нахождения собственных значений для обыкновенных дифференциальных уравнений аналогичным образом сводится к задаче нахождения собственных значений матрицы.

Спектральные методы были разработаны в длинной серии статей Стивеном Орсага, начиная с 1969 года для методов Фурье для периодических геометрических задач, полиномиальных спектральных методов для конечных и неограниченных геометрических задач, псевдоспектральных методов для сильно нелинейных задач, спектральных итерационных методов для решения задач стационарного состояния и других задач. Имплементация спектрального метода обычно завершается либо коллокацией, либо методом Галёркина, либо Тау-подходом[прояснить].

Спектральные методы вычислительно менее затратны, чем методы конечных элементов, но становятся менее точными для задач со сложными геометриями и прерывистыми коэффициентами. Это увеличение ошибки является следствием явления Гиббса.

Источник: Википедия

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я