Связанные понятия
Спектральная теория — общий термин в математике, под которым понимаются теории, расширяющие понятия собственной функции и собственного значения с квадратных матриц на более широкие классы линейных операторов в самых различных пространствах.
Линеаризация (от лат. linearis — линейный) — один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной. Методы линеаризации имеют ограниченный характер, т. е. эквивалентность исходной нелинейной системы и её линейного приближения сохраняется лишь для ограниченных пространственных или временных масштабов системы, либо для определенных процессов, причём, если система...
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Подробнее: Параболическое уравнение
Метод конечных разностей — численный метод решения дифференциальных уравнений, основанный на замене производных разностными схемами. Является сеточным методом.
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Корректно поставленная задача в математике — прикладная задача, математическое решение которой существует, единственно и устойчиво. Происходит от определения, данного Жаком Адамаром, согласно которому математические модели физических явлений должны иметь следующие свойства...
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Лине́йная систе́ма — любая система, для которой отклик системы на сумму воздействий равен сумме откликов на каждое воздействие. В математической модели линейной системы это означает, что оператор преобразования "вход-выход" линеен. Иногда линейное свойство системы называют принципом суперпозиции.
Неголономная система — механическая система, на которую, кроме геометрических, накладываются и кинематические связи, которые нельзя свести к геометрическим (их называют неголономными). Математически неголономные связи выражаются неинтегрируемыми уравнениями. Движение неголономной системы описывается с помощью специальных уравнений движения (уравнения Чаплыгина, Аппеля, Маджи) или уравнений движения, получаемых из вариационных принципов.
Стохастическое дифференциальное уравнение (СДУ) — дифференциальное уравнение, в котором один член или более имеют стохастическую природу, то есть представляют собой стохастический процесс (другое название — случайный процесс). Таким образом, решения уравнения также оказываются стохастическими процессами. Наиболее известный и часто используемый пример СДУ — уравнение с членом, описывающим белый шум (который можно рассматривать как пример производной винеровского процесса). Однако, существуют и другие...
Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве.
Гиперболические уравнения — класс дифференциальных уравнений в частных производных. Характеризуются тем, что задача Коши с начальными данными, заданными на нехарактеристической поверхности, однозначно разрешима.
Краевая задача (граничная задача) — задача о нахождении решения заданного дифференциального уравнения (системы дифференциальных уравнений), удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Спектр оператора — множество чисел, характеризующее линейный оператор. Применяется в линейной алгебре, функциональном анализе и квантовой механике.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Эргодичность — специальное свойство некоторых динамических систем, состоящее в том, что в процессе эволюции почти каждое состояние с определённой вероятностью проходит вблизи любого другого состояния системы.
Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Иоганна Дирихле.
Асимптотическое разложение функции f(x) — формальный функциональный ряд, такой, что сумма произвольного конечного числа членов этого ряда приближает (аппроксимирует) функцию f(x) в окрестности некоторой (возможно, бесконечно удалённой) её предельной точки. Понятие асимптотического разложения функции и асимптотического ряда были введены Анри Пуанкаре при разрешении задач небесной механики. Отдельные случаи асимптотического разложения были открыты и применялись ещё в XVIII в. Асимптотические разложения...
Мультииндекс (или мульти-индекс) — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить (записать более кратко) математические формулы.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
Квантовый вентиль (квантовый логический элемент) — это базовый элемент квантового компьютера, преобразующий входные состояния кубитов на выходные по определённому закону. Отличается от обычных логических вентилей тем, что работает с кубитами, а следовательно подчиняется квантовой логике. Квантовые вентили в отличие от многих классических всегда являются обратимыми.
Фу́нкция Гри́на — функция, используемая для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородной краевой задачи). Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Ме́тод обра́тной зада́чи рассе́яния — аналитический метод решения задачи Коши для нелинейных эволюционных уравнений. Основан на связи нелинейного уравнения с данными рассеяния семейства вспомогательных линейных дифференциальных операторов, дающей возможность по эволюции данных рассеяния восстановить эволюцию решения нелинейного уравнения.
Дифференцирование в алгебре — операция, обобщающая свойства различных классических производных и позволяющая ввести дифференциально-геометрические идеи в алгебраическую геометрию. Изначально это понятие было введено для исследования интегрируемости выражений в элементарных функциях алгебраическими методами.
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных независимых переменных.
Теория потенциала — раздел математики и математической физики, посвящённый изучению свойств дифференциальных уравнений в частных производных в областях с достаточно гладкой границей посредством введения специальных видов интегралов, зависящих от определённых параметров, называемых потенциалами.
Обратимые вычисления (англ. Reversible computing) — модель вычислений, в которой процесс вычисления является в некоторой степени обратимым. Например, в вычислительной модели, использующей наборы состояний и переходов между ними, необходимым условием обратимости вычислений является возможность построения однозначного (инъективного) отображения каждого состояния в следующее за ним. На XX век и начало XXI века обратимые вычисления обычно относят к нетрадиционным моделям вычислений.
Дискретное преобразование Фурье (в англоязычной литературе DFT, Discrete Fourier Transform) — это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов (его модификации применяются в сжатии звука в MP3, сжатии изображений в JPEG и др.), а также в других областях, связанных с анализом частот в дискретном (к примеру, оцифрованном аналоговом) сигнале. Дискретное преобразование Фурье требует в качестве входа дискретную функцию. Такие функции часто создаются путём дискретизации...
Скобка Мояля была введена в 1940 году Хосе Энрике Моялем, но ему удалось опубликовать свою работу только в 1949 году после долгих споров с Полем Дираком.. В то же время эта идея была независимо высказана в 1946 году Хипом Груневолдом в докторской диссертации.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Многомерный
анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина.
Полугруппа операторов — однопараметрическое семейство линейных ограниченных операторов в банаховом пространстве. Теория полугрупп операторов возникла в середине XX века в работах таких известных математиков, как Хилле (англ. Einar Hille), Филлипса (англ. Ralph Saul Phillips), Иосиды, Феллера. Основные применения этой теории: абстрактные задачи Коши, параболические уравнения, случайные процессы.
Опера́тор (позднелат. operator — работник, исполнитель, от operor — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения...
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
Подробнее: Пространство (математика)
Корреляционная функция — функция времени и пространственных координат, которая задает корреляцию в системах со случайными процессами.
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
Теория случайных матриц — раздел математики на стыке математической физики и теории вероятности, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило, задаётся закон распределения элементов. При этом изучается статистика собственных значений случайных матриц, а иногда также статистика их собственных векторов.
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.
Подробнее: Точнорешаемая задача
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.
Подробнее: Скобка Пуассона
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...