Связанные понятия
Мозаика Пенроуза , плитки Пенроуза — общее название трёх типов непериодического разбиения плоскости. Названы в честь английского математика Роджера Пенроуза, который исследовал эти разбиения в 70-х годах XX века.
Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако, ими можно замостить гиперболическую плоскость и сферу.
В геометрии подстановки плиток — это метод построения мозаик. Наиболее важно, что некоторые подстановки плиток образуют апериодические мозаики, то есть замощения, протоплитки которых не образуют какую-либо мозаику с параллельным переносом. Наиболее известные из них — мозаики Пенроуза. Подстановочные мозаики являются специальными случаями правил конечного подразделения, когда не требуется геометрическое равенство плиток.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Задача одной плитки (англ. einstein problem) — геометрическая проблема, ставящая вопрос о существовании одной протоплитки, которая образует непериодическое множество плиток, то есть о существовании фигуры, копиями которой можно замостить пространство, но только непериодичным способом. В источниках на английском языке такие фигуры называют «einsteins» — игра слов, нем. ein stein означает «один камень», и так же записывается фамилия физика Альберта Эйнштейна. В зависимости от конкретного определения...
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Набор плиток с самозамощением (англ. setiset) порядка n — это набор из n фигур, обычно плоских, каждая из которых допускает замощение меньшими копиями тех же n фигур. Более точно, n фигур могут быть собраны n различными способами, дающими большие копии фигур из того же набора, и коэффициент увеличения один и тот же. Рисунок 1 показывает пример для n = 4 с использованием декамино различной формы. Концепцию можно обобщить и использовать фигуры большей размерности. Название setisets дал Ли Сэллоус (англ...
В геометрии число Хееша фигуры — это максимальное число слоёв копий той же фигуры, которые могут её окружать. Задача Хееша — это задача определения набора чисел, которые могут быть числами Хееша. И то, и другое названы именем немецкого геометра Генриха Хееша , который нашёл мозаику с числом Хееша 1 (объединение квадрата, правильного треугольника и треугольника с углами 30-60-90) и предложил более общую задачу.
Парке́т или замощение — разбиение плоскости многоугольниками (или пространства многогранниками) без пробелов и перекрытий.
Группа орнамента (или группа плоской симметрии, или плоская кристаллографическая группа) — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.
Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.
Полимино , или полиомино (англ. polyomino) — плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам. Это полиформы, сегменты которых являются квадратами.
Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.
Плитки Вана (или домино Вана), впервые предложенные математиком, логиком и философом Хао Ваном в 1961, — это класс формальных систем. Они моделируются визуально с помощью квадратных плиток с раскрашиванием каждой стороны. Определяется набор таких плиток (например, как на иллюстрации), затем копии этих плиток прикладываются друг к другу с условием согласования цветов сторон, но без вращения или симметрического отражения плиток.
В геометрии гипотеза Келлера — это высказанная Отт-Генрихом Келлером гипотеза о том, что в любой мозаике в евклидовом пространстве, состоящей из однинаковых гиперкубов, найдутся два куба, соприкасающиеся грань-к-грани. Например, как показано на рисунке, в любой мозаике на плоскости из одинаковых квадратов, какие-то два квадрата должны соприкасаться ребро-к-ребру. Перрон доказал, что это верно в размерностях до 6. Однако для больших размерностей это неверно, как показали Лагарис и Шор для размерностей...
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Полиамонд (англ. polyiamond) или треуго́льный мо́нстр (англ. triangular animal) — геометрическая фигура в виде многоугольника, составленного из нескольких одинаковых равносторонних треугольников, примыкающих друг к другу по рёбрам. Полиамонды можно рассматривать как конечные подмножества треугольного паркета со связной внутренностью.
Критерий Конвея — набор условий, при выполнении которых протоплитка замощает плоскость. Назван по имени английского математика Джона Хортона Конвея.
Нотация Конвея для многогранников , разработанная Конвеем и продвигаемая Хартом, используется для описания многогранников, опираясь на затравочный (т.е. используемый для создания других) многогранник, модифицируемый различными префикс-операциями.
В статье суммируется информация о классах дискретных групп симметрии евклидовой плоскости. Группы симметрии, приведённые здесь, именуются по трём схемам именования: междурародная нотация, орбифолдная нотация и нотация Коксетера.
Подробнее: Список плоских групп симметрии
Разбиение многоугольника — это множество примитивных элементов (например, квадратов), которые не накладываются и объединение которых равно многоугольнику. Задача о разбиении многоугольника — это задача поиска разбиения, которое в некотором смысле минимально, например, разбиение с наименьшим числом элементов или разбиение с наименьшей суммой длин сторон.
Делящаяся плитка (англ. rep-tile) — понятие геометрии мозаик, фигура, которую можно разрезать на меньшие копии самой фигуры. В 2012 обобщение делящихся мозаик с названием self-tiling tile set (набор плиток с самозамощением) было предложено английским математиком Ли Сэлоусом в журнале Mathematics Magazine .
В математике
абстрактный многогранник , неформально говоря, это структура, которая учитывает только комбинаторные свойства традиционных многогранников и игнорирует много других их свойств, таких как углы, длины рёбер и т. д. При этом не требуется наличие какого-либо содержащего многогранник пространства, такого как евклидово пространство. Абстрактная формулировка реализует комбинаторные свойства как частично упорядоченное множество («посет»).
Простой многоугольник — это фигура, состоящая из непересекающихся отрезков («сторон»), соединённых попарно с образованием замкнутого пути. Если стороны пересекаются, многоугольник не является простым. Часто слово «простой» опускается из вышеприведённого определения.
Диаграммы Юнга — наглядноe описание представлений симметрических и полных линейных групп и изучения их свойств.
Теорема об упаковке кругов (известная также как теорема Кёбе — Андреева — Тёрстона) описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений (иногда называемый графом касаний) упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости (или, что эквивалентно, на сфере), то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки...
Куб Фибоначчи можно определить в терминах кодов Фибоначчи и расстояния Хэмминга, независимых множеств вершин в путях, или через дистрибутивные решётки.
В проективной геометрии
конфигурация на плоскости состоит из конечного множества точек и конечной конфигурации прямых, таких, что каждая точка инцидентна одному и тому же числу прямых и каждая прямая инцидентна одному и тому же числу точек.
Задачи упаковки — это класс задач оптимизации в математике, в которых пытаются упаковать объекты в контейнеры. Цель упаковки — либо упаковать отдельный контейнер как можно плотнее, либо упаковать все объекты, использовав как можно меньше контейнеров. Многие из таких задач могут относиться к упаковке предметов в реальной жизни, вопросам складирования и транспортировки. Каждая задача упаковки имеет двойственную задачу о покрытии, в которой спрашивается, как много требуется некоторых предметов, чтобы...
В теории графов частичный куб — это подграф гиперкуба, сохраняющий расстояния (в терминах графов) — расстояние между любыми двумя вершинами подграфа, то же самое, что и в исходном графе. Эквивалентно, частичный куб — это граф, вершины которого можно пометить битовыми строками одинаковой длины, так что расстояние между двумя вершинами в графе равно расстоянию Хэмминга между этими двумя метками. Такая разметка называется разметкой Хэмминга и она представляет изометричное вложение частичного куба в...
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Плитки Труше — квадратные плитки с рисунком, не обладающим вращательной симметрией. Расположенные в виде квадратной мозаики на плоскости, они могут образовать различные узоры.
В комбинаторике последовательность Дэвенпорта — Шинцеля является последовательностью символов, в которой любые два символа могут появиться в чередующемся порядке ограниченное число раз. Максимальная возможная длина последовательности Дэвенпорта — Шинцеля ограничена числом символов, умноженном на небольшой постоянный множитель, который зависит от числа разрешённых чередований. Последовательности Дэвенпорта — Шинцеля были впервые определены в 1965 году Гарольдом Дэвенпортом и Анджеем Шинцелем для анализа...
Нотация Конвея — это способ описания узлов, делающий многие свойства узлов очевидными. Нотация показывает строения узла, строя его с помощью некоторых операций над плетениями.
В геометрии
построение Витхоффа , или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.
Октамино — восьмиклеточные полимино, то есть плоские фигуры, состоящие из восьми равных квадратов, соединённых сторонами. С фигурами октамино, как со всеми полимино, связано много задач занимательной математики.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
В математическом анализе и информатике кривая Мортона, Z-последовательность,Z-порядок, кривая Лебега, порядок Мортона или код Мортона — это функция, которая отображает многомерные данные в одномерные, сохраняя локальность точек данных. Функция была введена в 1966 Гаем Макдональдом Мортоном. Z-значение точки в многомерном пространстве легко вычисляется чередованием двоичных цифр его координатных значений. Когда данные запоминаются в этом порядке, могут быть использованы любые одномерные структуры...
Подробнее: Кривая Мортона
Тришестиугольная мозаика — это одна из 11 однородных мозаик на евклидовой плоскости из правильных многоугольников. Мозаика состоит из правильных треугольников и правильных шестиугольников, расположенных так, что каждый шестиугольник окружён треугольниками, и наоборот. Название мозаики вызвано тем фактом, что она комбинирует правильную шестиугольную мозаику и правильную треугольную мозаику. Два шестиугольника и два треугольника чередуются вокруг каждой вершины, а рёбра образуют бесконечную конфигурацию...
Конфигурация Кремоны — Ричмонда — конфигурация из 15 прямых и 15 точек, по три точки, лежащих на каждой прямой, и через каждую точку проходят 3 прямых, при этом конфигурация не содержит треугольников. Конфигурацию изучали Кремона (Cremona 1877) и Ричмонд (Richmond 1900). Конфигурация является обобщённым четырёхугольником с параметрами (2,2). Граф Леви конфигурации — это граф Татта — Коксетера.
Исчисление Кёрби в геометрической топологии, названное именем Робиона Кёрби,— это метод модификации оснащённых зацеплений на трёхмерной сфере с помощью конечного числа движений Кёрби. Используя четырёхмерную теорию Серфа, Кёрби доказал, что если M и N являются трёхмерными многообразиями, полученными хирургией Дена (Хирургия Дена) из оснащённых зацеплений L и J соответственно, то они гомеоморфны тогда и только тогда, когда L и J связаны последовательностью движений Кёрби. Согласно теореме Ликериша...
Замощения
евклидовой плоскости выпуклыми правильными многоугольниками широко использовался ещё с античных времён. Первое систематическое изложение было сделано Кеплером в его книге Harmonices Mundi (Гармония мира, на латинском, 1619).
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
Мозаики «гирих» — это набор пяти плиток, использовавшихся для создания орнамента для украшения зданий в исламской архитектуре. Плитки использовались примерно с 12-го века и орнаменты существенно улучшились к моменту построения усыпальницы Дарб-и Имам в городе Исфахан в Иране (построена в 1453).
В геометрии полурегулярные мозаики — это набор евклидовых мозаик, замощающих плоскость двумя или более правильными многоугольниками. Разные авторы перечисляют различные наборы мозаик. Наиболее систематический подход, рассматривающий орбиты симметрии, относится к 2-однородным мозаикам, которых 20. Некоторые из полурегулярных мозаик, фактически, являются 3-однородными мозаиками.
Подробнее: Полурегулярная мозаика