Связанные понятия
Сингле́тный кислоро́д — общее название для двух метастабильных состояний молекулярного кислорода (O2) с более высокой энергией, чем в основном, триплетном состоянии. Энергетическая разница между самой низкой энергией O2 в синглетном состоянии и наименьшей энергией триплетного состояния составляет около 11400 кельвин (Te (a1Δg ← X3Σg−) = 7918,1 см−1), или 0,98 эВ. Открыт Х. Каутским.
Обрати́мые реа́кции — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), например...
Порфирины — природные и синтетические тетрапиррольные соединения, формально — производные порфина, макроцикла, образованного четырьмя пиррольными ядрами, соединенными по α-положениям четырьмя метиновыми группами.
Гидроксильная группа (гидроксогруппа, гидроксил) — функциональная группа OH органических и неорганических соединений, в которой атомы водорода и кислорода связаны ковалентной связью. В органической химии носит также название «спиртной группы».
Донорно-акцепторное взаимодействие — перенос заряда между молекулами донора и акцептора без образования между ними химической связи (обменный механизм); или передача неподеленной электронной пары от донора к акцептору, приводящая к образованию связи (донорно-акцепторный механизм).
Упоминания в литературе
Предложена в 1955 году Дэнхемом Харманом и объясняет накопление в организме повреждений агрессивным воздействием
свободных радикалов – молекул и атомов, содержащих неспаренные электроны во внешнем слое (это никак не связано с наличием или отсутствием электрического заряда, лишь с большей химической активностью). Сегодня теория учитывает действие не только собственно свободных радикалов, но и активных форм кислорода (например, перекисных соединений), связывая старение с окислительным стрессом вообще. Но для простоты продолжают говорить о свободных радикалах.
Семёнов также вел глубокие исследования цепных реакций. Они представляют собой серию самоинициируемых стадий в химической реакции, которая, однажды начавшись, продолжается до тех пор, пока не будет пройдена последняя стадия. Несмотря на то что немецкий химик Макс Боденштейн впервые предположил возможность таких реакций еще в 1913 году, теории, объясняющей стадии цепной реакции и показывающей ее скорость, не существовало. Ключом же к цепной реакции служит начальная стадия образования
свободного радикала – атома или группы атомов, обладающих свободным (неспаренным) электроном и вследствие этого чрезвычайно химически активных. Однажды образовавшись, он взаимодействует с молекулой таким образом, что в качестве одного из продуктов реакции образуется новый свободный радикал. Новообразованный свободный радикал может затем взаимодействовать с другой молекулой, и реакция продолжается до тех пор, пока что-либо не помешает свободным радикалам образовывать себе подобные, то есть пока не произойдет обрыв цепи.
Такие условия создаются чаще в июне – сентябре, и реже – зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота – в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых
свободных радикалов , отличающихся особой реакционной способностью. Такие смоги – нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной систем и часто бывают причинами преждевременной смерти городских жителей с ослабленным здоровьем.
Корпускулярное излучение, обладающее высокой энергией большой проникающей способности, активно взаимодействует с атомами и молекулами живых организмов, вызывая ионизацию, образование высоко реактивных
свободных радикалов , ядерные реакции.
По одной из наиболее распространенных гипотез первые органические соединения «получились» в первичной атмосфере Земли, насыщенной метаном, аммиаком, водородом, водными парами и пронизанной молниевыми разрядами. Предполагается, что именно атмосферное электричество и ультрафиолетовое излучение подтолкнуло первичную природу к образованию «кирпичиков» жизни около миллиарда лет назад. Под действием молний и потоков ионизирующего излучения эти вещества расщеплялись на активные компоненты –
свободные радикалы , случайным образом составляющие все более сложные молекулы.
Связанные понятия (продолжение)
Карбанион — анион, содержащий чётное число электронов со свободной электронной парой на четырехвалентном атоме углерода. К карбанионам относят как анионы с локализованным на углеродном атоме отрицательном заряде, так и анионы с делокализованным отрицательным зарядом, у которых по крайней мере в одной из канонических структур заряд локализован на атоме углерода...
Индукти́вный эффе́кт (полярный эффект) — смещение электронной плотности химической связи по σ-связям. Является разновидностью эффекта поля.
Гидроксо́ний (оксоний, гидроний) Н3О+ — комплексный ион, соединение протона с молекулой воды.
Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (реагентов) в другие вещества, при котором ядра атомов не меняются, при этом происходит перераспределение электронов и ядер, и образуются новые химические вещества. В отличие от ядерных реакций, при химических реакциях не изменяется общее число ядер атомов и изотопный состав химических элементов.
Карбкатион (карбокатион) — частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь. Карбкатион — сильная кислота Льюиса, обладает электрофильной активностью.
Ио́н (др.-греч. ἰόν «идущее») — частица, в которой общее число протонов не равно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего числа электронов, имеет отрицательный заряд и называется анионом.
Хиноны — полностью сопряжённые циклогексадиеноны и их аннелированные аналоги. Существуют два класса хинонов: пара-хиноны с пара-расположением карбонильных групп (1,4-хиноны) и орто-хиноны с орто-расположением карбонильных групп (1,2-хиноны). Благодаря способности к обратимому восстановлению до двухатомных фенолов некоторые производные пара-хинонов участвуют в процессах биологического окисления в качестве коферментов ряда оксидоредуктаз.
Автокатализ — катализ химической реакции одним из её продуктов или исходных веществ. Одним из наиболее широко известных примеров автокатализа является окисление щавелевой кислоты перманганатом...
Ковалентная связь (от лат. co — «совместно» и vales — «имеющий силу») — химическая связь, образованная перекрытием (обобществлением) пары валентных (находящихся на внешней оболочке атома) электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.
Цепная реакция в химии — реакция, в ходе которой исходные вещества вступают в цепь превращений с участием промежуточных активных частиц (интермедиатов) и их регенерацией в каждом элементарном акте реакции.
Функциональная группа — структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства. Старшая функциональная группа соединения является критерием его отнесения к тому или иному классу органических соединений.
Эпоксиды (оксираны) — насыщенные трёхчленные гетероциклы, содержащие в цикле один кислородный атом. Эпоксиды являются циклическими простыми эфирами, однако вследствие напряжённости трёхчленного цикла обладают высокой реакционной способностью в реакциях раскрытия цикла.
Катио́н — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион аммония, Ca2+ — двухзарядный катион кальция. В электрическом поле, катионы притягиваются к отрицательному электроду — катоду.
Пероксиды или перекиси — сложные вещества, в которых атомы кислорода соединены друг с другом.
Моле́кула (новолат. molecula, уменьшительное от лат. moles — масса) — электрически нейтральная частица, образованная из двух или более связанных ковалентными связями атомов. В физике к молекулам причисляют также одноатомные молекулы, то есть свободные (химически не связанные) атомы (например, инертных газов, ртути и т. п.). Причисление к молекулам одноатомных молекул, то есть свободных атомов, например одноатомных газов, приводит к совмещению понятий «молекула» и «атом».
Лига́нд (от лат. ligare «связывать») — атом, ион или молекула, связанные с неким центром (акцептором). Понятие применяется в биохимии для обозначения агентов, соединяющихся с биологическими акцепторами (рецепторами, иммуноглобулинами), а также в химии комплексных соединений, обозначая присоединенные к одному или нескольким центральным (комплексообразующим) атомам металла частицы.
Двойная связь — ковалентная связь двух атомов в молекуле посредством двух общих электронных пар. Строение двойной связи отражено в теории валентных связей. В этой теории считалось, что двойная связь образуется комбинацией сигма- и пи-связей.
Сольвата́ция (от лат. solvo «растворяю») — электростатическое взаимодействие между частицами (ионами, молекулами) растворённого вещества и растворителя. Сольватация в водных растворах называется гидратацией. Образующиеся в результате сольватации молекулярные агрегаты называются сольва́тами (в случае воды — гидратами). В отличие от сольволиза, объединение однородных частиц в растворе называют ассоциацией.
Хиральность (др.-греч. χειρ — рука) — свойство молекулы не совмещаться в пространстве со своим зеркальным отражением. Термин основан на древнегреческом названии наиболее узнаваемого хирального предмета — руки. Так, левая и правая руки являются зеркальными отражениями, но не могут быть совмещены друг с другом в пространстве. Подобным образом, свойством хиральности обладают молекулы, в которых отсутствуют зеркально-поворотные оси симметрии Sn, что эквивалентно наличию в молекуле элементов хиральности...
Карбоксильная группа (карбоксил) -СООН — функциональная одновалентная группа, входящая в состав карбоновых кислот и определяющая их кислотные свойства...
Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh или Eh) — мера способности химического вещества присоединять электроны (восстанавливаться). Окислительно-восстановительный потенциал выражают в милливольтах (мВ). Примером окислительно-восстановительного электрода являются: Pt/Fe3+,Fe2+
Бензоиновая конденсация (часто называемая реакцией конденсации, в силу исторических причин) — реакция между двумя ароматическими альдегидами, в частности, бензальдегидом. Реакция катализируется нуклеофилами, такими как анион цианида или N-гетероциклическими карбенами. Продукт реакции представляет собой ароматический ацилоин с бензоином в качестве исходного соединения.
Цвиттер-ион (биполярный ион; нем. Zwitter — «гермафродит») — молекула, которая, являясь в целом электронейтральной, в своей структуре имеет части, несущие как отрицательный, так и положительный заряды. Их иногда называют внутримолекулярными солями (например, внутримолекулярные соли аминокислот) и, иногда, (ошибочно) ионными диполярными соединениями. Некоторые химики относят к цвиттер-ионам лишь соединения с зарядами на несоседних атомах, поскольку существуют также соединения с зарядами на соседних...
Оксимы (или изонитрозосоединения) — органические соединения, включающие в себя одну или несколько изонитрозогрупп RR1C=N-OH. Обычно рассматриваются как производные альдегидов (R1 = O) — альдоксимы и кетонов — кетоксимы. Для альдоксимов и оксимов несимметричных кетонов характерна цис-транс-изомерия по связи C=N.
Ено́лы (также алкенолы) — α-гидроксиалкены, соединения общей формулы R1R2C=CR3OH. Енолы находятся в таутомерном равновесии с соответствующим карбонильным соединением — альдегидом или кетоном...
Изонитрилы (изоцианиды, карбиламины) — органические соединения общей формулы , изомерны нитрилам R—C≡N. ИЮПАК рекомендует использовать название «изоцианиды». Изонитрилы токсичны и обладают сильным отвратительным запахом, низшие изонитрилы представляют собой жидкости.
Аминогру́ппа — функциональная химическая одновалентная группа —NH2, органический радикал, содержащий один атом азота и два атома водорода.
Окисле́ние — это химический процесс, сопровождающийся увеличением степени окисления атома окисляемого вещества посредством передачи электронов от атома восстановителя (донора электронов) к атому окислителя (акцептору электронов).
Ката́лиз (греч. κατάλυσις от καταλύειν «разрушение») — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.
Глицеральдегид (глицераль, глицериновый альдегид,глицероза, 2,3-дигидроксипропаналь) — моносахарид из группы триоз с эмпирической формулой C3H6O3, принадлежит к альдозам. Является простейшим представителем альдосахаров (альдоз) и единственным сахаром из группы альдотриоз.
Ацилирование — введение ацильного остатка RCO- (ацила) в состав органического соединения, как правило, путём замещения атома водорода, введение остатка уксусной кислоты CH3CO- называют ацетилированием, бензойной C6H5CO- — бензоилированием, муравьиной HCO- — формилированием. В зависимости от атома, к которому присоединяется ацильный остаток, выделяют C-ацилирование, N-ацилирование, O-ацилирование.
Поля́рные вещества ́ в химии — соединения, молекулы которых обладают электрическим дипольным моментом. Для полярных веществ, в сравнении с неполярными, характерны высокая диэлектрическая проницаемость (более 10 в жидкой фазе), повышенные температура кипения и температура плавления.
Нитроалканы (нитропарафины) — это производные алканов, в молекулах которых один или несколько атомов водорода замещены на нитрогруппу. Относятся к классу нитросоединений.
Электронная пара — связанное состояние двух взаимодействующих электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона.
Автоокисление — процесс окисления органических соединений, самопроизвольно протекающий при их взаимодействии с кислородом воздуха.
Хромофо́ры (др.-греч. χρῶμα — цвет и φέρω — несу) — ненасыщенные группы атомов, обуславливающие цвет химического соединения. В то же время поглощающие электромагнитное излучение независимо от наличия окраски. Так, карбонильная группа C=O является хромофором, поглощающим в области 280 нм, в то же время кетоны, содержащие С=O – бесцветные вещества. Хромофорная теория возникновения окраски была предложена в 1878 г. немецким учёным Виттом. К хромофорам относят азогруппу —N=N—, нитрогруппу —NO2, нитрозогруппу...
Тио́лы (меркапта́ны) — сернистые аналоги спиртов общей формулы RSH, где R — углеводородный радикал, например, метантиол (метилмеркаптан) (CH3SH), этантиол (этилмеркаптан) (C2H5SH) и т. д., в терминологии IUPAC название «меркаптаны» признано устаревшим и не рекомендуется к использованию.
Реакция элиминирования (от лат. elimino — изгоняю) — процесс отщепления от молекулы органического соединения атомов или атомных групп без замены их другими. Исходными веществами могут служить представители разных классов органических соединений.
Нитросоединения — органические соединения, содержащие одну или несколько нитрогрупп —NO2. Под нитросоединениями обычно подразумевают C-нитросоединения, в которых нитрогруппа связана с атомом углерода (нитроалканы, нитроалкены, нитроарены). O-нитросоединения и N-нитросоединения выделяют в отдельные классы — нитроэфиры (органические нитраты) и нитрамины.
Ко́мплексные соединения (лат. complexus — сочетание, обхват) или координационные соединения (лат. co — «вместе» и ordinatio — «упорядочение») — это соединения (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.
Ами́д на́трия — неорганическое вещество с формулой NaNH2, производное аммиака. Представляет собой твёрдое вещество, которое реагирует с водой. Применяется в органическом синтезе.
Оксидоредукта́зы (КФ1) — отдельный класс ферментов, катализирующих лежащие в основе биологического окисления реакции, сопровождающиеся переносом электронов с одной молекулы (восстановителя — акцептора протонов или донора электронов) на другую (окислитель — донор протонов или акцептор электронов).
Никотинамидадениндинуклеотидфосфа́т (НАДФ, NADP) — широко распространённый в природе кофермент некоторых дегидрогеназ — ферментов, катализирующих окислительно-восстановительные реакции в живых клетках. НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества. В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях. НАДФ, — кофермент, отличающийся от НАД...
Упоминания в литературе (продолжение)
По мнению У. Дугласа, от переизбытка кислорода при его взаимодействии с другими веществами действительно могут возникнуть опасные реакции. Так появляются токсичные виды кислорода, окисляющие все подряд, включая молекулы ДНК.
Свободные радикалы – сверхактивный кислород и гидроксильный радикал ОН, взаимодействуя друг с другом, усиливают негативное действие на клетки организма. Утилизация кислорода порождает опасные вещества неполного метаболизма (свободные радикалы и перекись водорода). Организм старается побыстрее избавиться от них при помощи двух ферментов – каталазы и пероксидазы. Перекись, таким образом, включает работу защитных механизмов организма, а сам он обладает хорошо организованной и действенной системой защиты от этого вещества.
В 70 – 80-е годы XX столетия (Brown M. [et al.], 1979; Brown M., Goldstein J. [et al.], 1979; Brown M. [et al.], 1980) была описана возможность захвата избытка ЛПНП клетками ретикуло-эндотелиальной системы (РЭС) посредством скэвенджер-рецепторов (SR). Так как активность этих рецепторов не регулируется содержанием ХС в клетке, то поглощение ЛПНП клетками РЭС может протекать практически бесконтрольно (Денисенко А. Д., 2006). В основном этот путь утилизации ЛП предназначен для ЛПНП-частиц, подвергшихся модификации – перекисному окислению или другим изменениям под действием
свободных радикалов , перекисей и других метаболитов. Содержащийся в ЛПНП свободный ХС при этом эстерифицируется, а макрофаги, накапливая эстерифицированный ХС (ЭХС), трансформируются в пенистые клетки (Климов А. Н., Никульчева Н. Г., 1995).
2-й путь – непрямой: органические молекулы (молекулы живых организмов) изменяются под воздействием образовавшихся в результате облучения воды
свободных радикалов .
При определенных ситуациях и нагрузках в ткани может образовываться большое число высокотоксичных
свободных радикалов : оксидов, гидроксидов и перекисей. Эти соединения химически очень агрессивны. Они способны повреждать клеточные мембраны и вызывать самые разные нарушения жизнедеятельности организма. Но сами по себе они не являются первичным механизмом новообразования, а служат лишь фоном, на котором могут произойти последующие роковые изменения. Это всего лишь один из факторов образования в организме большого количества ущербных клеток, часть которых в дальнейшем под влиянием других факторов может переродиться в злокачественные.
Свободные радикалы – это нестабильные атомы или молекулы, которым недостаёт одного электрона. Стремясь отобрать у соседних атомов или молекул недостающий им электрон, они действуют как агрессивные окислители и в результате повреждают жизненно важные структуры организма (мембраны клеток, структурные молекулы внутриклеточного и межклеточного вещества, а также генетический аппарат клеток).
Антиокислители и
свободные радикалы , содержащиеся в составе настоя морского риса, могут быть в равной степени полезны и вредны организму. Плохая экологическая обстановка, табакокурение, вредное воздействие солнечного света, пищевых добавок – все это приводит к образованию свободных радикалов, которые ускоряют процесс старения организма, приводят к заболеваниям. Заболевания, возникающие в результате образования свободных радикалов, могут быть самыми различными: от артрита до рака. Более того, свободные радикалы могут воздействовать и на ДНК. Клетки ДНК содержат в себе генетический код каждой клетки, несут наследственную информацию. Все это позволяет организму существовать. Однако при нарушении деятельности ДНК, клетка может стать ненужной, а то и опасной. Но, с другой стороны, эти соединения необходимы здоровому организму.
Конечно, очень часто задают вопрос: действительно ли перекись водорода может вылечить рак? Лечение онкологических больных – это довольно сложный процесс, зависящий от степени развития процесса, его локализации. Использование химио– и радиотерапии было основано официальной медициной на том, что раковая клетка якобы более чувствительна к такого рода воздействиям, и это замедляет ее рост. Доказывалось также, что раковая клетка размножается гораздо быстрее, чем здоровая. Однако последние исследования показали, что раковая клетка делится медленнее, чем здоровая. Ведь здоровые клетки делятся со скоростью их разрушения: сколько погибло, столько и возникло, а раковая клетка в этом отношении просто не поддается контролю, и новая клетка (по своей программе) производится чуть быстрее, чем разрушается старая. Вот почему и образуется опухоль, тем более что после облучения в организме резко увеличивается количество
свободных радикалов , что само по себе способствует образованию опухолей.
Если употреблять янтарную кислоту совместно со средствами, способствующими выведению шлаков, можно заметно ослабить последствия интоксикации организма, повысить его сопротивляемость отравляющему действию некоторых веществ и
свободных радикалов . Поэтому янтарную кислоту необходимо принимать до химиотерапии, во время нее и после нее одновременно со щелочными кальциевыми препаратами, которые помогают уменьшить боли и избавиться от интоксикации организма в результате выделения раковыми клетками метаболитов.