Связанные понятия
Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения (в узком смысле — света) в виде поперечных электромагнитных волн и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать в вакууме, только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются...
Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.
Позитро́н (от англ. positive «положительный» + electron «электрон») — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже — трёх и более) гамма-квантов.
Энергетический уровень — собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случае вырождения. Понятие применимо к атомам (электронные уровни), молекулам (различные уровни, соответствующие колебаниям и вращениям — колебательные и вращательные уровни), атомным ядрам (внутриядерные...
Прото́н (от др.-греч. πρῶτος — первый, основной) — элементарная частица. Относится к барионам, имеет спин 1/2 и положительный электрический заряд +1 e. Стабилен.
Упоминания в литературе
Значительное количество сведений о природе межзвездного газа было получено за последние три десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными были исследования межзвездного газа на волне 21 см. Что это за волна? Еще в 1940-х годах теоретически было, предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое «глубокое» квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него
электрона . Если моменты ориентированы параллельно, получается один уровень, если антипараллельно – другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см.
В последнее время в составе космических лучей, попадающих в нашу атмосферу из межзвездного пространства, была обнаружена целая серия новых частиц, масса которых меняется в очень больших пределах (от 100 до 30000 электронных масс). Эти частицы носят различные наименования: мезоны (или мезатроны), варитроны и т. д. Установлено также, что все эти частицы не являются абсолютно неизменными. Протоны могут переходить в нейтроны и обратно,
электроны , соединяясь с позитронами, могут прекращать свое существование в виде частиц, превращаясь в электромагнитное излучение. С другой стороны, при известных условиях электромагнитное поле может «породить» пару электрон-позитрон. Обнаруженные в космических лучах, частицы в процессе взаимодействия с атомами атмосферы могут сильно изменять свою массу.
• β-излучение – поток отрицательно заряженных частиц (электронов) или заряженных положительно (позитронов). Позитрон – элементарная частица, имеющая массу
электрона , но обладающая положительным элементарным зарядом; β-частицы, испускаемые при ядерных распадах естественных и искусственных радионуклидов, например 4019K → 4020Ca т. е. ядро испускает электрон, при этом возникает ядро нового элемента при неизменном массовом числе. К β-излучателям относятся фосфор-32, стронций-90, иттрий-90 и др.
Такие версии должны быть основаны на том, что информационное поле является особой формой существования энергетического поля, а его доминантной составляющей являются физические поля заряженных частиц атомов и молекул, т. е. среди физических полей определяющим является электромагнитное поле. Если информационное поле имеет волновую природу, то возможным аналогом информационного поля является электромагнитное поле. Электромагнитное поле рассматривается как особая форма существования материи. Оно является переносчиком электромагнитного взаимодействия и характеризуется напряженностью электрического и магнитного полей. Известно, что электромагнитное взаимодействие определяет взаимодействие между ядром и
электронами в атомах и молекулах. Электромагнитное взаимодействие связано с большинством сил в макроскопических явлениях, таких как химические связи, упругость твердых тел и другие. Электромагнитное взаимодействие приводит к излучению электромагнитных волн, которые распространяются в пространстве с конечной скоростью в зависимости от свойств среды, в вакууме скорость распространения электромагнитных волн составляет ~ 3.105 км/с. Важной характеристикой электромагнитных волн является длина волны. По этой характеристике различают: радиоволны – 102 см, рентгеновское излучение 2.10-8, рентгеновское излучение – 2.10-5 – 6.10-12, у – излучение < 2.10-8 см, световые волны: инфракрасные 5.10-2 – 7,4.10-5 см, видимый свет 7,4.10-5 – 4.10-5 см, ультрафиолетовое излучение 4.10-5 – 10-7 см. При прохождении электромагнитных волн через среды происходят процессы отражения, преломления, поглощения, дифракции, интерференции, дисперсии и другие. Таким образом, можно допустить, что возможно существование информационного поля в форме особых электромагнитных колебаний с длиной волны, выходящей за указанные пределы.
Протоны и
электроны несут электрические заряды противоположных знаков – мы называем их положительными и отрицательными. Эти заряды становятся важными, когда элементы составляют химические соединения. Основными проводниками взаимодействий являются электроны. Нейтроны в атомах связаны в ядре с протонами. В отличие от протонов, они не имеют заряда и не участвуют в химических реакциях.
Связанные понятия (продолжение)
Магни́тный моме́нт , магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества (источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки; элементарным источником магнетизма считают замкнутый ток).
Иониза́ция — эндотермический процесс образования ионов из нейтральных атомов или молекул.
Возбуждение в физике — переход системы из основного энергетического состояния в состояние с большей энергией.
А́том (от др.-греч. ἄτομος «неделимый, неразрезаемый») — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.
Эксито́н (лат. excito — «возбуждаю») — квазичастица, представляющая собой электронное возбуждение в диэлектрике, полупроводнике или металле, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Понятие об экситоне и сам термин введены советским физиком Я. И. Френкелем в 1931 году, а экспериментально спектр экситона впервые наблюдался в 1952 году советским физиком Е. Ф. Гроссом. Представляет собой связанное состояние электрона и дырки. При этом его следует считать самостоятельной...
Электронная оболочка атома — область пространства наиболее вероятного нахождения электронов, имеющих одинаковое значение главного квантового числа n и, как следствие, располагающихся на близких энергетических уровнях. Число электронов в каждой электронной оболочке не может превышать определенного максимального значения.
Квазичасти́ца (от лат. quas(i) «наподобие», «нечто вроде») — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких как твердые тела и квантовые жидкости.
Фоно́н — квазичастица, введённая советским учёным Игорем Таммом. Фонон представляет собой квант колебательного движения атомов кристалла.
Ды́рка — квазичастица, носитель положительного заряда, равного элементарному заряду, в полупроводниках.
Мюо́н (от греческой буквы μ, использующейся для обозначения) в стандартной модели физики элементарных частиц — неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1⁄2. Вместе с электроном, тау-лептоном и нейтрино классифицируется как часть лептонного семейства фермионов. Так же как они, мюон, по-видимому, бесструктурен и не состоит из каких-то более мелких частиц. Как и все фундаментальные фермионы, мюон имеет античастицу с квантовыми числами (в том числе зарядом) противоположного...
Атом водорода — физико-химическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра как правило входит протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома...
Ио́н (др.-греч. ἰόν «идущее») — частица, в которой общее число протонов не равно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего числа электронов, имеет отрицательный заряд и называется анионом.
Пио́н , пи-мезо́н (греч. πῖ — буква пи и μέσον — средний) — три вида субатомных частиц из группы мезонов. Обозначаются π0, π+ и π−. Имеют наименьшую массу среди мезонов.
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части.
Внутренняя конве́рсия (от лат. conversio — обращение, вращение, превращение, изменение) — физическое явление, заключающееся в том, что переход атомного ядра из возбуждённого изомерного состояния в состояние с меньшей энергией (или основное состояние) осуществляется путём передачи высвобождаемой при переходе энергии непосредственно одному из электронов этого атома. Таким образом, в результате этого явления испускается не γ-квант, а так называемый конверсионный электрон, кинетическая энергия которого...
Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.
Атомная орбиталь — одноэлектронная волновая функция, полученная решением уравнения Шрёдингера для данного атома; задаётся: главным n, орбитальным l, и магнитным m — квантовыми числами.
Релятиви́стская части́ца — частица, движущаяся с релятивистской скоростью, то есть скоростью, сравнимой со скоростью света. Движение таких частиц, рассматриваемых как классические (неквантовые) материальные точки, описывается специальной теорией относительности. Безмассовые частицы (фотоны, гравитоны, глюоны и т. д.) всегда являются релятивистскими, поскольку могут существовать, лишь двигаясь со скоростью света.
Фундамента́льная части́ца — бесструктурная элементарная частица, которую до настоящего времени не удалось описать как составную. На сегодняшний день термин применяется преимущественно для лептонов и кварков (по 6 частиц каждого рода, вместе с античастицами, составляют набор из 24 фундаментальных частиц) в совокупности с калибровочными бозонами (частицами-переносчиками фундаментальных взаимодействий).
Заря́женная части́ца — частица, обладающая электрическим зарядом. Заряженными могут быть как элементарные частицы, так составные: атомарные и молекулярные ионы, многоатомные комплексы (кластеры, пылинки, капли). Заряд частиц всегда кратен элементарному заряду (если не учитывать кварковую модель адронов).
Дейтро́н (дейто́н) — ядро изотопа водорода — дейтерия — с массовым числом A=2. Обозначается 2H, D или d.
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырёх основных агрегатных состояний вещества.
Неупру́гое рассе́яние — столкновение частиц (включая столкновения с фотонами), сопровождающееся изменением их внутреннего состояния, превращением в другие частицы или дополнительным рождением новых частиц.
Электроны проводимости — это электроны, способные переносить электрический заряд в кристалле, отрицательно заряженные квазичастицы в металлах и полупроводниках, электронные состояния в зоне проводимости.
Ку́перовская па́ра — связанное состояние двух взаимодействующих через фонон электронов. Обладает нулевым спином и зарядом, равным удвоенному заряду электрона. Впервые подобное состояние было описано Леоном Купером в 1956 году, рассмотревшим лишь упрощенную двухчастичную задачу. Коррелированные пары электронов ответственны за явление сверхпроводимости.
Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, обусловленным спином частицы. Наиболее часто встречающимся примером такого взаимодействия является взаимодействие электрона, находящегося на одной из орбит в атоме, с собственным спином. Такое взаимодействие, в частности, приводит к возникновению так называемой тонкой структуры энергетического спектра электрона и расщеплению спектроскопических линий атома.
Тунне́льный эффект , туннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике и даже полностью противоречащее ей. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки...
Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.
Подробнее: Энергетический спектр
Носи́тели заря́да — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока.
Вы́нужденное излуче́ние , индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) между двумя состояниями (с более высокого на более низкий энергетический уровень) под воздействием индуцирующего фотона, энергия которого равна разности энергий этих состояний. Созданный фотон имеет ту же энергию, импульс, фазу, поляризацию, а также направление распространения, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными...
Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.
Сверхтонкая структура — структура уровней энергии атомов, молекул и ионов и, соответственно, спектральных линий, обусловленная взаимодействием магнитного момента ядра с магнитным полем электронов. Энергия этого взаимодействия зависит от возможных взаимных ориентаций спина ядра и спинов электронов.
Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.
Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка. Полученные функции будут эффективно...
Аннигиля́ция (лат. annihilatio — уничтожение, полное уничтожение, отмена) — реакция превращения частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных.
Теплово́е движе́ние — процесс хаотичного (беспорядочного) движения частиц, образующих вещество. Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул.
Электронное нейтрино (обозначаются как νe) — элементарная частица, являющаяся одним из трёх видов нейтрино. Вместе с электроном составляет первое поколение лептонов.
Адро́н ы (от др.-греч. ἁδρός «крупный; массивный») — класс составных частиц, подверженных сильному взаимодействию. Термин предложен советским физиком Л. Б. Окунем в 1962 году, при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории. Для элементарных частиц, не участвующих в сильных взаимодействиях, Л. Б. Окунь тогда же предложил название аденоны.
Позитро́ний — связанная квантовомеханическая система (экзотический атом), состоящая из электрона и позитрона. В зависимости от взаимного направления спинов электрона и позитрона различают ортопозитроний (спины сонаправлены, суммарный спин S = 1) и парапозитроний (спины противоположно направлены, суммарный спин S = 0). Позитроний, как и атом водорода, представляет собой систему двух тел, и его поведение и свойства точно описываются в квантовой механике. Он был впервые экспериментально идентифицирован...
Эффе́кт Шта́рка — смещение и расщепление электронных термов атомов во внешнем электрическом поле.
Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер; общее название для протонов и нейтронов — нуклоны.
Антипрото́н — античастица по отношению к протону. Имеет отрицательный электрический заряд и отрицательное барионное число, прочие свойства совпадают со свойствами протона. Впервые открыт в 1955 году на ускорителе протонов в Калифорнийском университете в Беркли. Результаты были опубликованы в журнале Phys. Rev., а сама работа принесла её авторам Нобелевскую премию по физике за 1959 год.
Рекомбинация — исчезновение пары свободных носителей противоположного заряда в среде с выделением энергии.
Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.
Нейтри́но (итал. neutrino — нейтрончик, уменьшительное от neutrone — нейтрон) — общее название шести нейтральных фундаментальных частиц с полуцелым спином, участвующих только в слабом и гравитационном взаимодействиях и относящихся к классу лептонов.
Упоминания в литературе (продолжение)
Уже довольно давно известно, что они состоят из трех типов элементарных частиц: протонов, нейтронов и
электронов (см. рис. 1.1А). Протоны и нейтроны – частицы относительно массивные, любой из них примерно в 1800 раз тяжелее электрона. Из протонов и нейтронов состоит атомное ядро, а из электронов – внешняя оболочка атома, которую обычно прямо так и называют электронной оболочкой. Электроны, образующие оболочку, перемещаются вокруг ядра по чрезвычайно сложным траекториям, но, как правило, не слишком от него удаляясь.
Но если атом можно разделить, почему же составляющие его частицы не разлетаются в разные стороны? Ученые смогли найти ответ и на этот вопрос. В ядре действуют так называемые ядерные силы, благодаря которым совокупность положительно заряженных протонов и не имеющих заряда нейтронов образует в ядре очень прочную систему.
Электроны – более свободные частицы. Они не входят в состав ядра, а вращаются вокруг него. Причем электроны заряжены отрицательно, но взаимодействие отрицательных электронов с ядром и друг с другом подчиняется силам притяжения и отталкивания. Поэтому, с одной стороны, электроны притянуты к ядру, но в определенных условиях могут отделиться от ядра и вести самостоятельную жизнь. Например, электрический ток в проводах и есть движение таких вот самостоятельных электронов.
Солнце – это звезда Главной последовательности, т. е. в ее недрах идет стабильный процесс превращения водорода в гелий путем цепочки реакций, в результате которых четыре протона превращаются в альфа-частицу. При этом выделяется энергия в виде кинетической энергии частиц, квантов электромагнитного излучения (фотонов) и нейтрино. Фотоны также возникают в результате аннигиляции
электронов и рождающихся в реакциях позитронов. Нейтрино слабо взаимодействуют с веществом и поэтому свободно покидают недра Солнца. Регистрируя эти частицы, мы можем получить прямую информацию о происходящих в недрах Солнца термоядерных реакциях. Энергия фотонов и кинетическая энергия образующихся частиц нагревают недра звезды, позволяя ей противостоять силам гравитации, которые стремятся сжать звезду.
Из сказанного можно сделать вывод, что для существования Вселенной, галактики и обитаемой планеты необходимы уникальные условия. Регулярные научные наблюдения позволили открыть 26 параметров, которые должны иметь строго определенные значения для существования Вселенной и жизни в ней. Это: постоянная сильного и слабого ядерного взаимодействия, постоянная гравитационного взаимодействия, постоянная электромагнитного взаимодействия; отношение массы нейтрона к массе протона, протона к массе
электрона , отношение количества протонов к количеству электронов и ряд других параметров. Они должны иметь строго постоянные значения!
Для того чтобы объяснить взаимодействие электромагнитных волн с веществом, немецкий физик Гендрик Антон Лоренц выдвинул гипотезу о существовании
электрона , т. е. малой электрически заряженной частички, которая в громадных количествах присутствует во всех весомых телах. Эта гипотеза объяснила открытое в 1896 г. немецким физиком П. Зееманом явление расщепления спектральных линий в магнитном поле. В 1897 г. У. Томсон экспериментально подтвердил наличие мельчайшей отрицательно заряженной частицы, или электрона.
Помните, мы говорили, что нейтрон и протон имеют практически одинаковую массу? Их масса различается практически на один
электрон . Иными словами, нейтрон тяжелее протона всего лишь на массу одного электрона. Нейтрон как бы состоит из протона и электрона в одном флаконе. Но именно «как бы», поскольку он является самостоятельной солидной частицей со своими свойствами, и никакого электрона «внутри» нейтрона не содержится, электрон образуется в момент распада, в результате распадной реакции.
Процессы, окружающие нас, настолько многообразны, что потребуется целая книга, чтобы описать их. Вся Вселенная наполнена ими. Например, излучения, или вибрации, связаны с орбитальными переходами
электронов в атомах, молекулах, ионах, с изменением вектора скорости зарядов, вектора скорости их дипольного момента и т. д.
Когда в молекулу попадает фотон с подходящей энергией, он поглощается парой
электронов , образующей химическую связь, и молекула переходит в возбужденное состояние с избыточной энергией. Возбужденных состояний как минимум два. Сначала молекула оказывается в неустойчивом и короткоживущем состоянии (так называемом синглетном состоянии). В нем спины электронов возбужденной пары еще антипараллельны, как и в спокойном состоянии молекулы. В синглетном состоянии молекула может сбросить возбуждение и вернуться в исходное состояние путем флюоресценции (излучения светового кванта с энергией чуть меньше исходной) или рассеяния энергии в тепло либо перейти в следующее – триплетное – состояние, в котором спины электронов становятся параллельными и химическая связь между атомами фактически разрывается. Если в молекуле была возбуждена одинарная связь, то молекула разрушается в этом месте. Если же была возбуждена двойная связь (точнее, так называемая пи-электронная система, образующая «вторые палочки» двойных связей), то молекула в триплетном состоянии сохраняет целостность, но становится бирадикалом – иными словами, у нее теперь имеются два неспаренных электрона, которые могут образовать две новые химические связи. Поэтому молекула в триплетном состоянии химически активна и вступает в разнообразные реакции. Например, молекулы этилена (С2H4), имеющие двойную связь между атомами углерода, при УФ-облучении частично объединяются попарно в циклобутан (С4H8), у которого вместо одной двойной связи образуются две одинарные связи между двумя дополнительными атомами углерода (рис. 6.2). Молекула может также вернуться из триплетного состояния в основное, невозбужденное путем излучения кванта света – фосфоресценции. В отличие от флюоресценции фосфоресценция может происходить спустя минуты и часы после облучения вещества, а разница в энергии поглощенного и излученного кванта света больше.
Наконец, независимо от наличия или отсутствия в молекулах электрических зарядов между ними действуют силы, называемые дисперсионными. Они являются результатом взаимной поляризации молекул, вызываемой непрерывным движением
электронов рядом расположенных атомов. Дисперсионное взаимодействие проявляется при расстояниях между частицами до 3–4 А. Так как нагревание тел не оказывает заметного влияния на движение электронов, то величина дисперсионных сил не зависит от температуры.
К началу XX в. было известно, что сам электрический заряд состоит из множества более мелких зарядов, и открыта первая элементарная частица – отрицательно заряженный
электрон . На протяжении XVIII–XIX вв. в ходе экспериментов были открыты основные законы электромагнитных явлений:
Химическая реакция происходит, когда один обычный атом сталкивается с другим таким же. У каждого атома имеется крохотное, но тяжелое ядро, обладающее положительным электрическим зарядом, окруженное облаком из одного или нескольких отрицательно заряженных
электронов . Изолированные атомные ядра практически никогда не взаимодействуют, за исключением внутризвездной «скороварки», для которой характерны сверхвысокие температура и давление. Однако электроны разных атомов постоянно сталкиваются друг с другом. Химические реакции происходят в те моменты, когда встречаются два или более атомов и их электроны вступают во взаимодействие и перегруппировываются. Такое перемешивание и связывание электронов случается по той причине, что их определенные комбинации оказываются наиболее устойчивыми, особенно совокупность двух, десяти или 18 электронов.
Слабое взаимодействие властвует над лептонами – в это семейство входят
электроны , мюоны, таулептоны и все разновидности нейтрино. В сильном взаимодействии участвуют адроны, среди которых наиболее известны нам протон и нейтрон, плюс еще несколько сотен уже известных физикам элементарных частиц. Электромагнитной силе подвластны все электрически заряженные частицы. Гравитации подчиняется все на свете.
По-видимому, автору не известно, что коронный разряд с несущих энергию конструкций не зависит от каких-либо необычных концентраций атмосферных ионов и, наоборот, зависит только от достаточно сильных полей, в которых непрерывно освобождающиеся
электроны (выбиваемые космическими лучами или радиоактивными источниками из нейтральных молекул) могут получить ускорение на одном и том же пути свободного пробега и приобрести при этом энергию, достаточную для инициирования дополнительной ударной ионизации. Ошибаясь в этом вопросе, Класс делает неверный вывод о коронных разрядах на линиях высокого напряжения в условиях избыточной ионизации воздуха.
К электрическому состоянию атмосферного воздуха относят ионизацию, электрическое и магнитное поле земной атмосферы. Ионизация – образование электрозаряженных частиц, происходит под влиянием излучений радиоактивных веществ, Уф-радиации, рентгеновских и космических лучей, процессах нагревания, распыления, дробления и т. д. В результате ионизации от нейтрального атома отделяется
электрон , который присоединяется к другому нейтральному атому, образуя отрицательный ион. Оставшаяся часть атома образует положительно заряженный ион. Ионизационное состояние воздуха характеризуется концентрацией ионов каждого вида в 1 мл воздуха.
– Хорошо, не буду вас больше интриговать: катодные лучи были потоком
электронов , которые вырывались с поверхности катода и летели к аноду под воздействием электрического поля. Фактически Крукс заложил основы современного телевидения, показав, что потоком электронов, вызывающих свечение экрана, можно рисовать разные картины, управляя движением электронов с помощью магнитного поля. Но тогда учёные ещё не открыли такую частицу, как электрон. Это позднее, в 1897 году, сделал Джозеф Джон Томсон – с помощью усовершенствованной трубки Крукса.
Выдающиеся русские ученые и Г. И. Шипов и А. Е. Акимов разработали теорию и математическими расчетами подтвердили передачу информации в физическом вакууме. Вся информация, в т. ч. и психическая энергия, события, выделяют заряженные частицы и вызывают «возмущение», окружающих частиц физического вакуума, создавая завихрения. В результате получается поле, в котором вращаются волновые пакеты
электронов и позитронов. Волновые пакеты взаимно согласованы – это и есть торсионные поля. Вихри несут информацию (структуру частиц) со скоростью 109 километров в секунду по расчетам Г.И. Шипова и А.Е. Акимова. Информация распространяется во Вселенной со скоростью больше чем скорость света в 10000 раз. Вихри, структура частиц, распространяется в субстанции ФВ и взаимодействуют друг с другом, образуя узоры интерферекции. Узоры интерферекции есть информация всех событий и объектов во Вселенной.
Саму возможность существования антивещества предсказал в 1898 году британский физик Артур Шустер в заметке, опубликованной в журнале Nature. Это произошло вскоре после открытия Томсоном
электрона , обнаружившего, что катодные лучи образованы входящими в состав вещества тождественными отрицательно заряженными частицами. Шустер предположил, что существует симметричный аналог электрона, заряженный положительно: ведь природа должна была позаботиться о симметрии между положительным и отрицательным… И лишь спустя 30 лет замечательный английский физик Поль Дирак заново открыл антиматерию, найдя антиэлектрон (позитрон) в своем уравнении! С этого времени изучением свойств антивещества всерьез занялись физики, и в течение прошлого века не один десяток ученых со всего мира был удостоен Нобелевской премии за свои выдающиеся исследования, поднимающие человечество по ступеням цивилизации.