Связанные понятия
Катализа́тор — химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции.
Дегидри́рование — реакция отщепления водорода от молекулы органического соединения. Является обратимой, обратная реакция — гидрирование. Смещению равновесия в сторону дегидрирования способствует повышение температуры и понижение давления, в том числе разбавление реакционной смеси. Катализаторами реакции гидрирование — дегидрирование являются металлы 8Б и 1Б подгрупп (никель, платина, палладий, медь, серебро) и полупроводниковые оксиды (Fe2O3, Cr2O3, ZnO, MoO3).
Пероксиды или перекиси — сложные вещества, в которых атомы кислорода соединены друг с другом.
Полимериза́ция (др.-греч. πολυμερής — состоящий из многих частей) — процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера. Молекула мономера, входящая в состав полимера, образует так называемое мономерное (структурное) звено. Элементный состав (молекулярные формулы) мономера и полимера приблизительно одинаков.
Гидрата́ция (от др.-греч. ὕδωρ «вода») — присоединение молекул воды к молекулам или ионам. Гидратация является частным случаем сольватации — присоединения к молекулам или ионам веществ молекул органического растворителя. В отличие от гидролиза гидратация не сопровождается образованием водородных или гидроксильных ионов. Гидратация в водных растворах приводит к образованию стойких и нестойких соединений воды с растворенным веществом (гидратов); в органических растворителях образуются аналогичные гидратам...
Упоминания в литературе
Перекись водорода – простое химическое соединение. Это вода с одним дополнительным атомом кислорода – Н2О2, окисляющее вещество, которое, подобно озону, способно высвободить один атом кислорода в присутствии другого вещества. Такая реакция называется
окислением . Два атома кислорода, (О2), тесно связаны воедино.
Кислород поступает в зону сварки из воздуха и электродного покрытия. Взаимодействуя с расплавленным металлом, кислород в первую очередь окисляет железо, так как его концентрация в стали наибольшая. Находясь в зоне дуги как в молекулярном, так и в атомарном состоянии, кислород образует с железом три оксида: FeO, Fе2О3 и Fe3O4. В процессе
окисления железа участвуют также находящиеся в зоне дуги углекислый газ и пары воды.
Очистка воды от железа может проводиться с помощью
окисления , причем эта операция может проводиться разными веществами. Окисление может происходить: воздухом в установках аэрации; хлором; перманганатом калия; перекисью водорода; озоном; алюмосиликатами. В результате окисления растворенное железо осаждается и фильтруется с помощью автоматизированного водоочистного оборудования.
Полоний кипит при сравнительно невысокой температуре – 949 °С, что определяет его летучесть (для сравнения: температура кипения свинца – 1710 °С, олова – 2360 °С). В парах полоний находится в виде молекул Ро2. Летучесть полония облегчает его очистку, а также перемещение микроколичеств металла из одной части аппаратуры в другую путем их нагрева и охлаждения. В то же время летучесть затрудняет работу с ощутимыми количествами полония. По химическим свойствам полоний несколько похож на висмут, а также на свой ближайший аналог – неметалл теллур и проявляет типичные для элемента VI группы степени
окисления : –2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании) с образованием красного диоксида РоО2. Сероводород из растворов солей полония осаждает черный сульфид PoS – тот самый, который был в осадке у Марии Кюри.
Выделение CO2 в грунтах происходит в основном за счет биохимических реакций
окисления различных компонентов потребляемым кислородом с генерацией углекислого газа. Однако на выделение CO2 из грунта могут также оказывать влияние биохимические реакции, идущие с потреблением CO2, свойственные хемосинтезирующим организмам. Поэтому биологическая активность грунта может оцениваться по его газо-потреблению (кислород, расходуемый организмами на окисление) или газовыделению (диоксид углерода). По газовыделению чаще всего она оценивается скоростью продуцирования диоксида углерода из исследуемого грунта.
Связанные понятия (продолжение)
Тиосульфа́ты — соли и сложные эфиры тиосерной кислоты, H2S2O3. Тиосульфаты неустойчивы, поэтому в природе не встречаются. Наиболее широкое применение имеют тиосульфат натрия и тиосульфат аммония.
Эпоксиды (оксираны) — насыщенные трёхчленные гетероциклы, содержащие в цикле один кислородный атом. Эпоксиды являются циклическими простыми эфирами, однако вследствие напряжённости трёхчленного цикла обладают высокой реакционной способностью в реакциях раскрытия цикла.
Ами́д на́трия — неорганическое вещество с формулой NaNH2, производное аммиака. Представляет собой твёрдое вещество, которое реагирует с водой. Применяется в органическом синтезе.
Тио́лы (меркапта́ны) — сернистые аналоги спиртов общей формулы RSH, где R — углеводородный радикал, например, метантиол (метилмеркаптан) (CH3SH), этантиол (этилмеркаптан) (C2H5SH) и т. д., в терминологии IUPAC название «меркаптаны» признано устаревшим и не рекомендуется к использованию.
Гидро́лиз (от др.-греч. ὕδωρ «вода» + λύσις «разложение») — сольволиз водой. Это химическая реакция взаимодействия вещества с водой, при которой происходит разложение этого вещества и воды с образованием новых соединений. Гидролиз соединений различных классов (соли, углеводы, белки, сложные эфиры, жиры и др.) существенно различается.
Нитриты — соли азотистой кислоты HNO2, например, нитрит натрия NaNO2, нитрит кальция Ca(NO2)2. Известны нитриты щелочных, щелочноземельных, 3d-металлов, а также нитриты свинца и серебра.
Ацетальдеги́д (у́ксусный альдегид, этана́ль, метилформальдегид) — органическое соединение класса альдегидов с химической формулой CH3-CHO, является альдегидом этанола и уксусной кислоты. Это один из наиболее важных альдегидов, широко встречающийся в природе и производится в больших количествах индустриально. Ацетальдегид встречается в кофе, в спелых фруктах, хлебе, и синтезируется растениями как результат их метаболизма. Также производится окислением этанола.
Окислительный аммоно́лиз (окислительное аминирование, аммоксидирование) — сопряжённое окисление углеводородов и аммиака молекулярным кислородом с образованием нитрилов или синильной кислоты, что объясняет широкое его применение в промышленности. Реакция амоксидирования, как правило, осуществляется в газовой фазе, причем для разных классов органических соединений она протекает при разных температурах и в присутствии разных катализаторов.
Алкилирование — введение алкильного заместителя в молекулу органического соединения. Типичными алкилирующими агентами являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы. Катализаторами алкилирования являются минеральные кислоты, кислоты Льюиса а также цеолиты.
Реа́кции разложе́ния — химические реакции, в которых из одного, более сложного вещества образуются два или более других, более простых веществ.
Кисло́ты — химические соединения , способные отдавать катион водорода (кислоты Брёнстеда), либо соединения, способные принимать электронную пару с образованием ковалентной связи (кислоты Льюиса).
Алюмогидрид лития (аланат лития) — неорганическое соединение, комплексный смешанный гидрид лития и алюминия с формулой Li, белые кристаллы.
Гликолевая кислота (гидроксиуксусная кислота, гидроксиэтановая кислота) HOOC-CH2-OH — простейшая гидроксикислота. Бесцветные кристаллы с запахом жженого сахара. Соли и анионы гликолевой кислоты называются...
Нитрование — реакция введения нитрогруппы —NO2 в молекулы органических соединений.
Омыление — гидролиз сложного эфира с образованием спирта и кислоты (или её соли, когда для омыления берут раствор щёлочи)...
Имидазол — органическое соединение класса гетероциклов, пятичленный цикл с двумя атомами азота и тремя атомами углерода в цикле, изомерен пиразолу.
Сульфирование (органических соединений) — введение сульфогруппы (—SO3H) в органические соединения с образованием связи S-С...
Сульфокислоты (сульфоновые кислоты) — органические соединения общей формулы RSO3H или R-SO2OH, где R — органический радикал. Сульфокислоты рассматриваются как органические соединения, замещенные по углероду сульфогруппой -SO3H .
Гидроксильная группа (гидроксогруппа, гидроксил) — функциональная группа OH органических и неорганических соединений, в которой атомы водорода и кислорода связаны ковалентной связью. В органической химии носит также название «спиртной группы».
Ионообменные смолы — синтетические органические иониты — высокомолекулярные синтетические соединения с трехмерной гелевой и макропористой структурой, которые содержат функциональные группы кислотной или основной природы, способные к реакциям ионного обмена.
Перокси́д водоро́да (перекись водорода), H2O2 — простейший представитель пероксидов. Бесцветная жидкость с «металлическим» вкусом, неограниченно растворимая в воде, спирте и эфире. Концентрированные водные растворы взрывоопасны. Пероксид водорода является хорошим растворителем. Из воды выделяется в виде неустойчивого кристаллогидрата H2O2∙2H2O.
Хлораль (трихлорацетальдегид, трихлоруксусный альдегид) — органическое соединение, принадлежащее к классу альдегидов, соответствующее трихлоруксусной кислоте; бесцветная жидкость со специфическим резким запахом, растворим в органических растворителях и нерастворим в воде. Впервые получен в 1832 г. Юстусом Либихом при хлорировании этанола,.
Ароматические соединения (арены) — циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.
Диметилами́н (CH3)2NH — вторичный амин, производное аммиака, в молекуле которого два атома водорода замещены метильными радикалами.
Нитра́ты (лат. nitras; устар. селитры) — соли азотной кислоты, содержащие однозарядный анион NO3−.
Циангидрины (α-гидроксинитрилы, нитрилы α-оксикислот) — соединения, содержащие нитрильную и гидроксильную группы при одном углеродном атоме, формально — продукты присоединения синильной кислоты к альдегидам и кетонам.
Ацетаты — соли и эфиры уксусной кислоты. Соли — кристаллические продукты, хорошо растворимые в воде; эфиры — летучие жидкости с фруктовым и цветочным запахом. Ацетаты применяют как растворители для лаков, смол, в производстве целлулоида, в парфюмерии и пищeвой промышленности.
Хлорид алюминия (хлористый алюминий) — неорганическое соединение, соль алюминия и соляной кислоты с химической формулой AlCl3.
Аммиа́к (нитрид водорода) — химическое cоединение азота и водорода с формулой NH3, при нормальных условиях — бесцветный газ с резким характерным запахом.
Обрати́мые реа́кции — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), например...
Трифтори́д бо́ра (фторид бора) — бинарное неорганическое соединение бора и фтора с формулой BF3.
Органические соединения, органические вещества — класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Органические соединения редки в земной коре, но обладают наибольшей важностью, потому что являются основой всех известных форм жизни. Основные дистилляты нефти считаются строительными блоками органических соединений. Органические соединения, кроме углерода (C...
Карбоксильная группа (карбоксил) -СООН — функциональная одновалентная группа, входящая в состав карбоновых кислот и определяющая их кислотные свойства...
Хлорсульфо́новая кислота , HSO3Cl — монохлорангидрид серной кислоты, бесцветная, дымящая на воздухе и резко пахнущая жидкость.
Глико́ли (дио́лы, двухатомные спирты) — класс органических соединений, содержащих в молекуле две гидроксильные группы. Имеют общую формулу CnH2n(OH)2. Простейшим гликолем является этиленгликоль НО-СН2-СН2-ОН.
Диметиланилин (N,N-диметиланилин) — органическое соединение, принадлежащее классу третичных аминов. Формально является производным аммиака, в котором атомы водорода замещены на фенильный и два метильных радикала.
Реа́кция конденса́ции — исторически сложившееся название некоторых реакций с различными механизмами в органической химии. В более узком значении под реакцией конденсации понимают взаимодействие двух и более органических соединений, проходящее с образованием новой межуглеродной связи вида C—C.
Подробнее: Конденсация (химия)
Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (реагентов) в другие вещества, при котором ядра атомов не меняются, при этом происходит перераспределение электронов и ядер, и образуются новые химические вещества. В отличие от ядерных реакций, при химических реакциях не изменяется общее число ядер атомов и изотопный состав химических элементов.
Хлорбензол (фенилхлорид) — ароматическое органическое соединение, имеющее формулу C6H5Cl, бесцветная горючая жидкость с характерным запахом.
Адипи́новая кислота ́ (гександио́вая кислота) НООС(СН2)4СООН — двухосновная предельная карбоновая кислота. Обладает всеми химическими свойствами, характерными для карбоновых кислот.
Резорцин (резорцинол, 1,3-дигидроксибензол, мета-дигидроксибензол) — органическое соединение c химической формулой С6H4(OH)2, двухатомный фенол. Бесцветные кристаллы со специфическим запахом. Изомерен пирокатехину и гидрохинону, отличаясь от них лишь относительным расположением гидроксильных групп.
Изомеризация — превращение химического соединения в изомер. Процесс изомеризации направлен на получение высокооктановых компонентов товарного бензина из низкооктановых фракций нефти путём структурного изменения углеродного скелета. Источником детонации в двигателях внутреннего сгорания является образование свободных радикалов по цепному механизму. Нормальные неразветвленные алканы при горении образуют наиболее активные первичные радикалы, чем вторичные или третичные радикалы при горении разветвленных...
Хиноны — полностью сопряжённые циклогексадиеноны и их аннелированные аналоги. Существуют два класса хинонов: пара-хиноны с пара-расположением карбонильных групп (1,4-хиноны) и орто-хиноны с орто-расположением карбонильных групп (1,2-хиноны). Благодаря способности к обратимому восстановлению до двухатомных фенолов некоторые производные пара-хинонов участвуют в процессах биологического окисления в качестве коферментов ряда оксидоредуктаз.
Неоргани́ческие (минера́льные) кисло́ты — неорганические вещества, обладающие комплексом физико-химических свойств, которые присущи кислотам. Вещества кислотной природы известны для большинства химических элементов за исключением щелочных и щёлочноземельных металлов.
Упоминания в литературе (продолжение)
В результате
окисления и конденсации этих элементов образуются твердые частички сложного вида в форме оксидов.
А теперь рассмотрим, как клетка «дышит». Осуществляется клеточное дыхание в митохондриях, «легких» клетки. Процесс этот так и называется – дыхательная цепь, состоит из ряда последовательных окислительно-восстановительных реакций, в которых каскадно, т. е. не одномоментно, выделяется энергия, а от субстрата, углеводов, жиров и белков, остаются углекислый газ и вода.
Окисление это происходит при помощи кислорода, который поступает через легкие и переносится гемоглобином. С общебиологической точки зрения биологическое окисление обратно фотосинтезу: при фотосинтезе расходуется энергия Солнца для образования глюкозы (соединений углерода), а при биологическом окислении путем расщепления глюкозы эта энергия освобождается.
В обычной последовательности реакций в митохондриях – в цикле Кребса – янтарная кислота является одним из промежуточных соединений. Как показали исследования Института теоретической и экспериментальной биофизики РАН, энергетическая мощность процесса синтеза АТФ при
окислении янтарной кислоты существенно выше, чем при окислении любого другого субстрата.
Детоксикационная функция печени состоит в обезвреживании в результате происходящих в печени процессов биосинтеза ядовитых для человеческого организма веществ. Иногда они становятся безвредными или даже нейтральными органическими соединениями, чаще всего – белковыми. Происходит это путем
окисления , восстановления, метилирования, ацетилирования и соединения с теми или иными веществами. В печени также активно идет синтез «защитных» веществ, например синтез мочевины. С ее помощью обезвреживается очень токсичный аммиак.
Кислород по биологической роли – самая важная составная часть воздуха. В природе постоянно происходит потребление кислорода при дыхании человека и животных. Расходуется кислород на процессы
окисления и горения. Несмотря на значительный расход кислорода, его содержание в воздухе практически не изменяется, так как в растительном мире идет постоянно процесс ассимиляции углекислого газа и выделение кислорода. В результате процессов фотосинтеза в атмосферу поступает около 5 × 1014 тонн кислорода в год, что примерно соответствует его потреблению. Под действием солнечных лучей молекулы воды распадаются также с образованием кислорода.
катаболизм – разложение сложного вещества на более простые или
окисление какого-либо вещества, обычно протекающее с высвобождением энергии в виде тепла или АТФ;
Гликолиз – ферментативный анаэробный процесс метаболизма углеводов (главным образом, глюкозы) до молочной кислоты. Обеспечивает клетку энергией в условиях недостаточного снабжения кислородом, а в аэробных условиях является стадией, предшествующей дыханию. При гликолизе 1 молекулы глюкозы образуется 2 молекулы молочной кислоты и 2 молекулы АТФ.
Окисление – соединение вещества с O2, потеря водорода или потеря электронов. Биологическое окисление катализируют ферменты, локализованные в матриксе митохондрий. Окисление происходит в цикле Кребса, он же цикл трикарбоновых кислот или цикл лимонной кислоты. Молекулой, входящей в цикл Кребса, является ацетилкоэнзим А (который образуется при метаболизме как углеводов, так и липидов и аминокислот). Основная функция окисления субстрата в цикле Кребса – обеспечение реакций окислительного фосфорилирования атомами водорода (Н+). Окислительное фосфорилирование основано на следующих принципах: источником энергии, идущей на присоединение остатка фосфорной кислоты к АДФ (фосфорилирование АДФ, в результате которого образуется АТФ), является соединение атомов водорода с молекулой кислорода, вследствие чего образуется вода (эти реакции – основной потребитель O2 в клетке). Ферменты, осуществляющие процессы окислительного фосфорилирования, встроены во внутреннюю мембрану митохондрий.
Известны 2 фазы реакции: восстановления – процесс, в ходе которого молекула получает электрон от другого вещества, и
окисления – обратный процесс потери или отдачи электронной молекулой другой.
Метаболическая емкость аэробного механизма практически безгранична, поскольку имеются большие запасы энергетических источников, дающих большое количество образования АТФ. Так, при
окислении 1 молекулы глюкозы в аэробных условиях образуется 38 молекул АТФ, тогда как в анаэробных – только 2 АТФ, а при окислении высших жирных кислот образуется еще больше энергии – 130 АТФ.
Факультативные анаэробы способны расти как в присутствии кислорода, так и в его отсутствие, используя при этом в качестве терминальных акцепторов электронов молекулярный кислород или органические соединения. Кроме того, среди факультативных анаэробов встречаются бактерии, способные переключаться с
окисления на ферментацию, а также такие бактерии, которые способны расти в присутствии атмосферного кислорода, при этом не используя его, а энергию получают исключительно с помощью брожения.
Детоксикационная функция печени состоит в обезвреживании в результате происходящих в печени процессов биосинтеза ядовитых для человеческого организма веществ. Иногда они становятся безвредными или даже нейтральными органическими соединениями, чаще всего – белковыми. Происходит это путем
окисления , восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. В печени также активно идет синтез «защитных» веществ, например синтез мочевины. С ее помощью обезвреживается очень токсичный аммиак.
Особенность онкоклеток заключается в их способности существовать и вести свой метаболизм почти без доступа кислорода. Источником энергии для них является анаэробный гликолиз[1]. Именно это отличие от остальных клеток организма[2] является их уязвимым местом, ахиллесовой пятой. При анаэробном гликолизе
окисление глюкозы зачастую идет не до конца и с выделением относительно небольшого количества энергии. В результате клетки опухоли потребляют чрезмерное количество углеводов и выделяют большое количество недоокисленных метаболитов – кислотных или спиртовых, в зависимости от глубины процесса. Дело в том, что промежуточными веществами гликолиза являются органические кислоты (пировиноградная и молочная), а окончательными – спирт, вода и углекислый газ. Не случайно анаэробный гликолиз часто называют спиртовым брожением (даже при молочнокислом брожении образуется некоторое количество спирта).
Таким образом, в первичном «органическом бульоне», покрывшем Землю, процесс образования белковых молекул шел за счет Z-аминокислот. Очень рано появились металлоорганические комплексы, в том числе железопорфирины, которые могли играть роль мощных катализаторов в реакциях
окисления с выделением энергии. Синтез белковых молекул, вероятно, являлся уже достаточно сложным процессом к тому времени, когда сформировались механизмы трансляции. Белковые «протоклетки» могли образовываться путем формирования поверхностей с избирательными свойствами. Образование нуклеиновых кислот шло независимо от белков, а их комплексы возникли уже позже. Первые организмы представляли собой агрегаты нуклеопротеидов, способных к самоудвоению (дубликации) и связанных с другими белками, осуществляющими ферментативное расщепление органических веществ с выделением энергии. Эти первичные гетеротрофные организмы обладали свойствами, составляющими основу живого. Для них было характерно следующее:
Роль железа в организме чрезвычайно велика. Основная его функция – дыхательная. Железо, содержащееся в гемоглобине, обеспечивает транспорт кислорода кровью. Чтобы справиться с этой задачей, металл должен быть двухвалентным. Железо, входящее в состав ферментов тканевого дыхания, напротив, обязательно изменяет свою валентность при транспорте электронов в дыхательной цепи. Роль железа не исчерпывается дыхательной функцией. Оно входит в состав важнейших ферментов антиоксидантной защиты клеток (каталазы, пероксидаз) и ферментов системы обезвреживания чужеродных веществ в печени (цитохромов Р-450). Но оно же способно значительно повредить клетки; Fe+H– инициатор процесса перекисного
окисления липидов (ПОЛ).
При чрезмерном рафинировании охлаждающего масла резко уменьшаются ароматические компоненты. Хотя среди ароматических компонентов вещества с плохой химической стабильностью, но если ароматические компоненты чистые, то возникает активное влияние этих компонентов на стабильность к
окислению и предельное давление. Поэтому есть необходимость применения ручного способа рафинирования для сохранения указанных эффективных элементов. Таким образом, нужно выбирать масло с хорошим смазывающим свойством, чтобы даже при применении в реальной машине не возникало плавления.
Без атомарного кислорода не происходит
окисления пищи и ее переработки в полезные для организма вещества. Однако мы сами делаем все, чтобы затруднить переработку: плохо пережевываем пищу, готовим ее варварскими методами, пренебрегаем правилами смешения продуктов, мало двигаемся, курим и т. д. Поэтому атомарного кислорода расходуется больше, чем хотелось бы. Вот природа и запрограммировала своеобразный резерв получения атомарного кислорода – Н2О2. Это с одной стороны, а с другой – атомарный кислород сам по себе является мощнейшим антиоксидантом, который уничтожает в организме всю патогенную флору.
Но вода также образуется внутри клеток благодаря
окислению атомов водорода, находящихся в метаболитах. Это так называемая метаболическая вода, или вода окисления. Потребление жидкости, пищи, образование метаболической воды в тканях и выделение мочи, удаление воды с калом, испарение пота, выдыхание паров при дыхании определяют баланс воды в организме человека.
Жиры состоят из глицерина и жирных кислот. При мобилизации их из внутриклеточных жировых депо (процесс липолиза) они расщепляются на составные части. Глицерин обменивается по пути превращения углеводов, а образующиеся жирные кислоты подвергаются
окислению в митохондриях клеток, куда они переносятся при посредстве карнитина. Жирные кислоты, входящие в состав молекул жиров, различаются по насыщенности внутримолекулярных связей. Жиры животного происхождения отличаются высоким содержанием насыщенных жирных кислот и используются в основном для энергетических целей. Растительные жиры в большом количестве содержат непредельные жирные кислоты, которые используются для построения клеточных мембран и выполнения каталитических функций. В пище, потребляемой спортсменами, должны в большом количестве содержаться непредельные жирные кислоты, легко включаемые в процессы «рабочего» обмена веществ и необходимые для поддержания структурной целостности клеточных мебран. Использование жиров как энергетического материала особенно важно в тех видах спорта, где предельная длительность выполняемых упражнений превышает 1,5 ч (велосипедные и лыжные гонки, бег на сверхдлинные дистанции, длительные пешие переходы, восхождения на горы и т. п.), а также в условиях низкой температуры окружающей среды, когда жиры используются в целях терморегуляции. Следует, однако, учитывать, что для полноценного использования жиров в качестве энергетического материала в тканях должно поддерживаться высокое напряжение кислорода. Любые нарушения адекватного снабжения тканей кислородом приводят к накоплению недоокисленных продуктов жирового обмена – кетоновых тел, с которыми связано развитие хронического утомления при длительной работе.
Для жира рыб характерным является присутствие непредельных жирных кислот с увеличенным числом двойных связей: линоленовой С17Н29СООН (три двойные связи), арахидоновой С19Н31СООН (четыре двойные связи), клупанадоновой С21Н33СООН (пять двойных связей). Непредельные жирные кислоты составляют основу рыбьего жира (до 84 % от общего количества жирных кислот), что объясняет его жидкую консистенцию и легкую усвояемость. В то же время из—за высокой непредельности жирных кислот жир рыб легко окисляется с накоплением продуктов
окисления (перекиси, гидроперекиси) и распада (альдегидов, кетонов, низкомолекулярные жирных кислот, спиртов и др.), которые существенно ухудшают вкус и запах не только жира, но и самой рыбной продукции, являясь одновременно токсичными элементами для организма человека.
При соответствующей силе тока в цепи на защищаемом изделии происходит восстановление окислителя, процесс же
окисления претерпевает вещество анода.
Активирует процесс
окисления жирных кислот в жировой ткани. Одновременно с этим выделяется свободная энергия. Данное вещество стимулирует окисление жирных кислот посредством их переноса через мембрану в митохондрии. В результате в тканях накапливается меньше жира и происходит снижение массы тела.
Кислород оказывает окисляющее действие на окружающие органические компоненты, в том числе и на бактерии. В процессе
окисления образуется пена, способствующая очищению поверхности от болезнотворных микроорганизмов. Кроме того, пена способствует ускорению процесса свертывания крови. Это свойство перекиси водорода используется при порезах и ранах, когда необходимо остановить кровотечение.
В организме человека непрерывно происходят процессы
окисления (соединения с кислородом) различных пищевых веществ – белков, жиров, углеводов, которые сопровождаются образованием и выделением тепла. Это тепло необходимо для всех жизненных процессов, оно расходуется на нагревание вдыхаемого воздуха, на поддержание температуры тела. Тепловая энергия обеспечивает также деятельность мышечной системы. Чем больше мышечных движений выполняет человек, тем больше он производит потерь, для покрытия которых требуется большее количество пищи.
Все дело в том, что растительные масла имеют разное процентное содержание жирных кислот. Например, подсолнечное масло держит первенство по содержанию линолевой кислоты. Полезна ли она? Отнюдь. Эта кислота содержит большое количество ненасыщенных химических связей, готовых к реакциям
окисления . При окислении линолевой кислоты образуются перекисные соединения и свободные радикалы, для нейтрализации которых организм расходует большие количества антиоксидантов и витаминов. А оливковое масло содержит примерно в 5 раз меньше линолевой кислоты, чем подсолнечное, так что делайте выводы.
Для поддержания довольно длительной мышечной деятельности необходимо постоянное восстановление АТФ с той же скоростью, с которой он расходуется. Необходимая для ресинтеза АТФ энергия поступает в результате
окисления углеводов, жиров, белков, а также за счет расщепления креатинфосфата и гликогена (глюкозы). Распад этих веществ сопровождается освобождением энергии, запасенной в их химических связях. Эта свободная энергия обеспечивает связывание АДФ и фосфата с образованием АТФ.
Антиоксиданты – это вещества, которые препятствуют процессам
окисления в организме, а именно вследствие этих процессов мы стареем. Антиоксиданты нейтрализуют свободные радикалы, отвечающие за процесс старения. Система антиоксидантной защиты подразделяется на первичную (антиоксиданты-ферменты) и вторичную (антиоксиданты-витамины). Участвуя в химических реакциях, антиоксиданты сами окисляются, поэтому нуждаются в постоянном пополнении. Виноград – прекрасный источник такого пополнения.
В 70 – 80-е годы XX столетия (Brown M. [et al.], 1979; Brown M., Goldstein J. [et al.], 1979; Brown M. [et al.], 1980) была описана возможность захвата избытка ЛПНП клетками ретикуло-эндотелиальной системы (РЭС) посредством скэвенджер-рецепторов (SR). Так как активность этих рецепторов не регулируется содержанием ХС в клетке, то поглощение ЛПНП клетками РЭС может протекать практически бесконтрольно (Денисенко А. Д., 2006). В основном этот путь утилизации ЛП предназначен для ЛПНП-частиц, подвергшихся модификации – перекисному
окислению или другим изменениям под действием свободных радикалов, перекисей и других метаболитов. Содержащийся в ЛПНП свободный ХС при этом эстерифицируется, а макрофаги, накапливая эстерифицированный ХС (ЭХС), трансформируются в пенистые клетки (Климов А. Н., Никульчева Н. Г., 1995).
Приведенная выше классификация не учитывает каменные угли, подвергшиеся
окислению в природных условиях, в период формирования угольных месторождений. Окисленные угли отличают пониженная высшая теплота сгорания на сухую и беззольную массу (Qsdaf), а также потеря спекаемости. Различают I группу окисленности (снижение Qsdaf на 10 %) и II группу (снижение Qsdaf нa 25 %). Так, например, длиннопламенный уголь Таллинского месторождения (Кузбасс) имеет высшую теплоту сгорания Qsdaf = 31,82 МДж/кг. Окисленный уголь того же месторождения ДРОК-I (длиннопламенный, рядовой, окисленный I группы) – до 27,42 МДж/кг, а еще более окисленный – ДРОК-II – только 25,04 МДж/кг.
Основным принципом действия препарата является освобождение кислорода, в результате чего происходит сильное
окисление , то есть разрушение. Именно на этом и основано его антисептическое действие. При нанесении перекиси водорода на поврежденный участок кожи или слизистой окисляются (т. е. уничтожаются) находящиеся там бактерии, вирусы, паразиты и т. п. Происходит чисто механическое очищение. В связи с этим врачи часто применяют перекись водорода для обработки ран, пораженных микробами.
В механизме детоксицирующего действия флавоноидных гликозидов немаловажную роль играют такие факторы, как уплотнение сосудисто-тканевых мембран, предупреждение
окисления липидов в печени, активация аденозинтрифосфатазы (АТФ-азы), накопление в печени гликогена и комплексообразующая способность по отношению к ионам металлов (меди, железа, цинка, марганца и др.).
Функции митохондрий образование энергии в виде АТФ. Источником образования энергии в митохондрии (ее «топливом») является пировиноградная кислота (пируват), которая образуется из углеводов, белков и липидов в гиалоплазме.
Окисление пирувата происходит в митохондриальном матриксе в цикле трикарбоновых кислот, а на кристах митохондрий осуществляется перенос электронов, фосфорелирование АДФ и образование АТФ. Образующаяся в митохондриях и, частично, в гиалоплазме АТФ является единственной формой энергии, используемой клеткой для выполнения различных процессов.