Связанные понятия
Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин.
Построение Хайоша — это операция над графами, названная именем венгерского математика Дьёрдя Хайоша, которая может быть использована для построения любого критического графа или любого графа, хроматическое число которого не меньше некоторого заданного порога.
Степень графа не следует путать с умножением графа на себя, который (в отличие от степени графа), в общем случае, имеет много больше вершин, чем исходный граф.
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
Снарк в теории графов — связный кубический граф без мостов c хроматическим индексом 4. Другими словами, это граф, в котором каждая вершина имеет три соседние вершины и рёбра нельзя выкрасить только в три цвета, так чтобы два ребра одного цвета не сходились в одной вершине. (По теореме Визинга хроматический индекс кубического графа равен 3 или 4.) Чтобы избежать тривиальных случаев, снарками часто не считают графы, имеющие обхват меньше 5.
В теории графов нечётные графы On — это семейство симметричных графов с высоким нечётным обхватом, определённых на некоторых семействах множеств. Они включают и обобщают графы Петерсена.
Подробнее: Нечётный граф
Экстремальная теория графов — это ветвь теории графов. Экстремальная теория графов изучает экстремальные (максимальные или минимальные) свойства графов, удовлетворяющих определённым условиям. Экстремальность может относиться к различным инвариантам графов, таким как порядок, размер или обхват. В более абстрактном смысле теория изучает, как глобальные свойства графа влияют на локальные подструктуры графа.
В теории графов медианным графом называется неориентированный граф, в котором любые три вершины a, b, и c имеют единственную медиану — вершину m(a,b,c), которая принадлежит кратчайшим путям между каждой парой вершин a, b и c.
Подробнее: Медианный граф
Раскраска графов находит применение и во многих практических областях, а не только в теоретических задачах. Помимо классических типов проблем, различные ограничения могут также быть наложены на граф, на способ присвоения цветов или на сами цвета. Этот метод, например, используется в популярной головоломке Судоку. В этой области всё ещё ведутся активные исследования.
В теории графов говорят, что граф G гипогамильтонов, если сам по себе граф не имеет гамильтонова цикла, но любой граф, полученный удалением одной вершины из G, является гамильтоновым.
Подробнее: Гипогамильтонов граф
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Структурная теорема графов — это главный результат в области теории графов. Результат устанавливает глубокую и фундаментальную связь между теорией миноров графов и топологическими вложениями. Теорема была сформулирована в семнадцати статьях из серии из 23 статей Нейла Робертсона и Пола Сеймура. Доказательство теоремы очень длинно и запутано. Каварабайаши и Мохар и Ловаш провели обзор теоремы в доступном для неспециалистов виде, описав теорему и её следствия.
В теории графов
число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Граф Аполлония — это неориентированный граф, образованный рекурсивным процессом подразделения треугольника на три меньших треугольника. Графы Аполлония можно эквивалентно определить как планарные 3-деревья, как максимальные планарные хордальные графы, как однозначно 4-раскрашиваемые планарные графы или как графы блоковых многогранников. Графы названы именем Аполлония Пергского, изучавшего связанные построения упаковки кругов.
Гомоморфизм графов — это отображение между двумя графами, не нарушающее структуру. Более конкретно, это отображение между набором вершин двух графов, которое отображает смежные вершины в смежные.
В теории графов
граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду (ребро, соединяющее две вершины цикла, но не являющееся его частью).
Граф решётки — это граф, рисунок которого, вложенный в некоторое евклидово пространство Rn, образует регулярную мозаику. Это подразумевает, что группа биективных преобразований, переводящая граф в себя, является решёткой в теоретико-групповом смысле.
Подробнее: Решётка (теория графов)
Интервальный граф — граф пересечений мультимножества интервалов на прямой. Имеет по одной вершине для каждого интервала в множестве и по ребру между каждой парой вершин, если соответствующие интервалы пересекаются.
Теорема Робертсона — Сеймура (также называемая теоремой о минорах графа ) утверждает, что неориентированные графы, частично упорядоченные отношением минорности, образуют вполне квазиупорядоченное множество. Эквивалентно, любое семейство графов, замкнутое по минорам, может быть определено конечным набором запрещённых миноров, аналогично как теорема Вагнера определяет планарные графы как графы, не имеющие в качестве миноров полный граф K5 и полный двудольный граф K3,3.
Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.)
В теории графов
псевдолес — это неориентированный граф , в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
В теории графов совершенным графом называется граф, в котором хроматическое число любого порождённого подграфа равно размеру максимальной клики этого подграфа. Благодаря строгой теореме о совершенных графах, с 2002 года известно, что совершенные графы — это то же самое, что и графы Бержа. Граф G является графом Бержа если ни G, ни его дополнение не имеет порождённых циклов нечётной длины (5 и более рёбер).
Подробнее: Совершенный граф
Лемма о рукопожатиях — положение теории графов, согласно которому любой конечный неориентированный граф имеет чётное число вершин нечётных степеней. Лемма берёт название от популярной аналогии: в группе людей, некоторые из которых пожимают друг другу руки, чётное число людей поприветствовало таким образом нечётное число коллег.
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом...
Подробнее: Корона (теория графов)
Теорема Рамсея — теорема комбинаторики о разбиениях множеств, сформулированная и доказанная английским математиком Фрэнком Рамсеем в 1930 году. Встречается в литературе в разных формулировках. Эта теорема положила начало теории Рамсея.
Для ориентированного графа G термины converse (обратный), transpose (транспонированный) или reverse (противоположный) используются для обозначения другого ориентированного графа с тем же набором вершинам и с теми же дугами, но ориентация дуг этого графа противоположна ориентации дуг графа G. То есть, если граф G содержит дугу (u,v), то обратный/транспонированный/противоположный граф графу G содержит дугу (v,u) и наоборот.
Подробнее: Транспонированный граф
В теории графов пороговый граф — это граф, который может быть построен из одновершинного графа последовательным выполнением следующих двух операций...
Граф циклов группы иллюстрирует различные циклы в группе и, в частности, используется для визуализации структуры малых конечных групп.
В математике случайный граф — это общий термин для обозначения вероятностного распределения графов. Случайные графы можно описать просто распределением вероятности или случайным процессом, создающим эти графы. Теория случайных графов находится на стыке теории графов и теории вероятностей. С математической точки зрения случайные графы необходимы для ответа на вопрос о свойствах типичных графов. Случайные графы нашли практическое применение во всех областях, где нужно смоделировать сложные сети — известно...
Перечисление графов — категория задач перечислительной комбинаторики, в которых нужно пересчитать неориентированные или ориентированные графы определённых типов, как правило, в виде функции от числа вершин графа. Эти задачи могут быть решены либо точно (как задача алгебраического перечисления) или асимптотически.
Тотальная раскраска возникает естественным путём, поскольку она является простым смешением вершинной и рёберной раскрасок.
Гипотеза Эрдёша — Фабера — Ловаса — это нерешённая проблема о раскраске графов, названная именами Пала Эрдёша, Ванса Фабера и Ласло Ловаса, которые сформулировали её в 1972. Гипотеза гласит...
В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.
Подробнее: Циркулянтный граф
Панциклический граф — ориентированный или неориентированный граф, который содержит циклы всех возможных длин от трёх до числа вершин графа. Панциклические графы являются обобщением гамильтоновых графов, графов, которые имеют циклы максимальной возможной длины.
Симметричный граф (или транзитивный относительно дуг граф) — граф G, для любых двух пар смежных вершин которого u1—v1 и u2—v2 имеется автоморфизм...
Фактор графа G — это остовный подграф, то есть подграф, имеющий те же вершины, что и граф G. k-фактор графа — это остовный k-регулярный подграф, а k-факторизация разбивает рёбра графа на непересекающиеся k-факторы. Говорят, что граф G k-факторизуем, если он позволяет k-разбиение. В частности, множество рёбер 1-фактора — это совершенное паросочетание, а 1-разложение k-регулярного графа — это рёберная раскраска k цветами. 2-фактор — это набор циклов, которые покрывают все вершины графа.
Говорят, что ориентированный
граф апериодичен, если нет целого числа k > 1, делящего длину любого цикла графа. Эквивалентно, граф апериодичен, если наибольший общий делитель длин его циклов равен единице. Этот наибольший общий делитель для графа G называется периодом графа G.
В теории графов графом Халина называется некоторый вид планарного графа, который строится из дерева, имеющего по меньшей мере 4 вершины, ни одна из которых не имеет в точности двух соседей. Дерево рисуется на плоскости так, что никакие рёбра не пересекаются, затем добавляются рёбра, соединяющие все его листья в цикл. Графы Халина названы по имени немецкого математика Рудольфа Халина, изучавшего их в 1971 году, но кубические графы Халина изучались за столетие до этого английским математиком Томасом...
Подробнее: Граф Халина
Теорема о совершенных графах Ловаша утверждает, что неориентированный граф является совершенным тогда и только тогда, когда его дополнение также совершенно. Это утверждение высказал в виде гипотезы Берж и утверждение называют иногда слабой теоремой о совершенных графах, чтобы не смешивать со строгой теоремой о совершенных графах, описывающей совершенные графы их запрещёнными порождёнными подграфами.
В теории графов теорема Вагнера — это математическая характеризация запрещёнными графами планарных графов, названная в честь Клауса Вагнера. Теорема утверждает, что конечный граф является планарным тогда и только тогда, когда его миноры не включают ни K5 (полный граф с пятью вершинами), ни K3,3 (коммунальный граф, полный двудольный граф с шестью вершинами). Теорема была одной из наиболее ранних работ в теории миноров графа и её можно рассматривать как предшественницу теоремы Робертсона — Сеймура...
Гамильто́нов граф — математический объект теории графов. Представляет собой граф (набор точек и соединяющих их линий), который содержит гамильтонов цикл. При этом гамильтоновым циклом является такой цикл (замкнутый путь), который проходит через каждую вершину данного графа ровно по одному разу.
В теории графов
паросочетание или независимое множество рёбер в графе — это набор попарно несмежных рёбер.
Кограф ы открывались независимо несколькими авторами, начиная с 1970-х годов. Самые ранние упоминания можно найти у Янга, Лерчса, Зайнше и Самнера. Эти графы назывались D*-графами, наследственными графами Дейси (после работы Джеймса Дейси об ортомодулярных решётках. Смотрите работу Самнера) и графы с двумя потомками Барлета и Ури.
Жёсткость графа — мера связности графа: граф G t-жёсток при некотором вещественном t, если для любого целого k > 1 нельзя разбить граф G на k различных компонент связности путём удаления менее чем tk вершин. Например, граф 1-жёсток, если число компонент, образующихся при удалении вершин, всегда не превосходит числа удалённых вершин. Жёсткость графа — это максимальное t, для которого он t-жёсток. Число является конечным числом для всех конечных графов, за исключением полных графов, которые, по соглашению...
В теории графов параллельно-последовательные графы — это графы с двумя различными вершинами, которые называются терминальными, образованные рекурсивно с помощью двух простых операций. Эти графы могут быть использованы для моделирования последовательного и параллельного соединения электрических цепей.
Подробнее: Параллельно-последовательный граф
Теорема Брукса — утверждение в теории графов, устанавливающее связь между максимальной степенью графа и его хроматическим числом. Согласно этой теореме вершины связного графа, в котором все вершины имеют не больше Δ соседей, можно раскрасить всего в Δ цветов, за исключением двух случаев — полных графов и циклов нечётной длины, для которых требуется Δ + 1 цветов.
В теории графов графами Пэли (названы в честь Раймонда Пэли) называются плотные неориентированные графы, построенные из членов подходящего конечного поля путём соединения пар элементов, отличающихся на квадратичный вычет. Графы Пэли образуют бесконечное семейство конференсных графов, поскольку тесно связаны с бесконечным семейством симметричных конференсных матриц. Графы Пэли дают возможность применить теоретические средства теории графов в теории квадратичных вычетов и имеют интересные свойства...
Подробнее: Граф Пэли