Связанные понятия
В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.
Подробнее: Циркулянтный граф
Граф Кэли — граф, который строится по группе с выделенной системой образующих. Назван в честь Артура Кэли.
Периферийный цикл в неориентированном графе является, интуитивно, циклом, который не отделяет любую часть графа от любой другой части. Периферийные циклы (или, как они сначала назывались, периферийные многоугольники, поскольку Тат называл циклы «многоугольниками»), первым изучал Тат и они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом...
Подробнее: Корона (теория графов)
Окрестность часто обозначается как NG(v) или (если известно, о каком графе идёт речь) N(v). То же самое обозначение окрестности может использоваться для ссылки на множество смежных вершин, а не на соответствующий порождённый подграф. Окрестность, описанная выше, не включает саму вершину v и об этой окрестности говорят как об открытой окрестности вершины v. Можно определить окрестность, включающую v. В этом случае окрестность называется закрытой и обозначается как NG. Если не указано явно, окрестность...
Автоморфизм графа есть отображение множества вершин на себя, сохраняющее смежность. Множество таких автоморфизмов образует вершинную группу графа или просто группу графа. Группа подстановок на множестве ребер называется реберной группой графа, которая тесно связана с вершинной...
Спектральная теория графов — направление в теории графов, изучающее свойства графов, характеристических многочленов, собственных векторов и собственных значений матриц, связанных с графом, таких, как его матрица смежности или матрица Кирхгофа.
Дистанционно-транзитивный граф — такой граф, что для любых двух заданных вершин v и w, находящихся на расстоянии i, и любых двух вершин x и y, находящихся на том же расстоянии, существует автоморфизм графа, который переводит v в x и w в y.
Сильно регулярный граф является дистанционно-регулярным с диаметром 2, но только в том случае, когда μ не равно нулю.
Экспандер ы — это класс графов, изучение которых первыми начали московские математики М. С. Пинскер, Л. А. Бассалыго и Г. А. Маргулис в семидесятые годы XX века.
В теории графов графом гиперкуба Qn называется регулярный граф с 2n вершинами, 2n−1n рёбрами и n рёбрами, сходящимися в одной вершине. Его можно получить как одномерный скелет геометрического гиперкуба. Например, Q3 — это граф, образованный 8 вершинами и 12 рёбрами трёхмерного куба. Граф можно получить другим образом, отталкиваясь от семейства подмножеств множества с n элементами путём использования в качестве вершин все подмножества и соединением двух вершин ребром, если соответствующие множества...
Подробнее: Граф гиперкуба
Орграф называется сильно связным (англ. strongly connected), если любые две его вершины сильно связны. Две вершины s и t любого графа сильно связны, если существует ориентированный путь из s в t и ориентированный путь из t в s.
Подробнее: Компонента сильной связности в орграфе
n-Мерная
целочисленная решётка (или кубическая решётка), обозначается Zn, — это решётка в евклидовом пространстве Rn, точки которой являются n-кортежами целых чисел. Двумерная целочисленная решётка называется также квадратной решёткой. Zn является наиболее простым примером решётки корней. Целочисленная решётка является нечётной унимодулярной решёткой.
Дистанционно-регулярный граф — регулярный граф такой, что для любых двух вершин v и w число вершин с расстоянием j от v и расстоянием k от w зависят только от j, k и i = d(v, w).
Задача о вершинном покрытии — NP-полная задача информатики в области теории графов. Часто используется в теории сложности для доказательства NP-полноты более сложных задач.
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
Порождённый подграф графа — это другой граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.
Граф решётки — это граф, рисунок которого, вложенный в некоторое евклидово пространство Rn, образует регулярную мозаику. Это подразумевает, что группа биективных преобразований, переводящая граф в себя, является решёткой в теоретико-групповом смысле.
Подробнее: Решётка (теория графов)
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
Косое разбиение графа — это разбиение его вершин на два подмножества, такое что порождённый подграф, образованный одним из его подмножеств вершин является несвязным, а другой порождённый подграф, образованный другим подмножеством является дополнением несвязного графа. Косые разбиения играют важную роль в теории совершенных графов.
В теории графов
глубина дерева связного неориентированного графа G — это числовой инвариант G, минимальная высота дерева Тремо для суперграфа графа G. Этот инвариант и близкие понятия встречаются под различными именами в литературе, включая число ранжирования вершин, упорядоченное хроматическое число и минимальная высота исключения дерева. Понятие близко также к таким понятиям, как циклический ранг ориентированных графов и высота итерации языка регулярных языков ; . Интуитивно, если древесная ширина...
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре (на этой странице).
Подробнее: Глоссарий теории графов
Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.
Подробнее: Рёберный граф
Степень графа не следует путать с умножением графа на себя, который (в отличие от степени графа), в общем случае, имеет много больше вершин, чем исходный граф.
Граф C является накрывающим графом другого графа G, если имеется накрывающее отображение из множества вершин C в множество вершин G. Накрывающее отображение f является сюръекцией и локальным изоморфизмом — окрестность вершины v в C отображается биективно в окрестность f(v) в G.
Фактор графа G — это остовный подграф, то есть подграф, имеющий те же вершины, что и граф G. k-фактор графа — это остовный k-регулярный подграф, а k-факторизация разбивает рёбра графа на непересекающиеся k-факторы. Говорят, что граф G k-факторизуем, если он позволяет k-разбиение. В частности, множество рёбер 1-фактора — это совершенное паросочетание, а 1-разложение k-регулярного графа — это рёберная раскраска k цветами. 2-фактор — это набор циклов, которые покрывают все вершины графа.
Планарное накрытие конечного графа G — это конечный накрывающий граф графа G, являющийся планарным графом. Любой граф, который может быть вложен в проективную плоскость, имеет планарное накрытие. Нерешённая гипотеза Сэйи Негами утверждает, что только эти графы и имеют планарные накрытия.
Алгебраическая теория графов — это ветвь математики, в которой применяются алгебраические методы к задачам с графами. Другие подходы к задачам с графами — это геометрический, комбинаторный и алгоритмический. Существует три основные ветви алгебраической теории графов — две ветви используют линейную алгебру и теорию групп, а одна ветвь изучает инварианты графа.
Восходящее планарное представление направленного ациклического графа — это вложение графа в евклидово пространство, в котором рёбра представлены как непересекающиеся монотонно возрастающие кривые. То есть, кривая, представляющая любое ребро, должна иметь свойство, что любая горизонтальная прямая пересекает его максимум в одной точке, и никакие два ребра не могут пересекаться, разве что на концах. В этом смысле это идеальный случай для послойного рисования графа, стиля представления графа, в котором...
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Связный граф — граф, содержащий ровно одну компоненту связности. Это означает, что между любой парой вершин этого графа существует как минимум один путь. Другими словами, нет изолированной вершины ( такой, которая не имеет соответствующих ей рёбер (называется "ребра, инцидентные вершине 1" (или 2) ).
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
В теории графов
число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
В теории графов графом единичных расстояний называется граф, образованный точками на евклидовой плоскости, при этом две вершины соединяются ребром если расстояние между ними равно в точности единице. Рёбра графа единичных расстояний иногда пересекаются, так что они не всегда планарны. Граф единичных расстояний без пересечений называется спичечным графом.
Подробнее: Граф единичных расстояний
Путь в графе — последовательность вершин, в которой каждая вершина соединена со следующей ребром.
Разбие́ние мно́жества — это представление его в виде объединения произвольного количества попарно непересекающихся подмножеств.
Два-граф ы не являются графами, и их не следует путать с другими объектами, которые называются 2-графами в теории графов, в частности, с 2-регулярными графами. Для их различения используется слово «два», а не цифра «2».
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Ориентация неориентированного графа — это назначение направлений каждому ребру, что превращает исходный граф в ориентированный граф.
Диэдральная группа (группа диэдра) — группа симметрии правильного многоугольника, включающая как вращения, так и осевые симметрии. Диэдральные группы являются простейшими примерами конечных групп и играют важную роль в теории групп, геометрии и химии. Хорошо известно и совершенно тривиально проверяется, что группа, образованная двумя инволюциями с конечным числом элементов в области определения является диэдральной группой.
Мост — ребро в теории графов, удаление которого увеличивает число компонент связности. Такие рёбра также известны как разрезающие рёбра, разрезающие дуги или перешейки. Эквивалентное определение — ребро является мостом в том и только в том случае, если оно не содержится ни в одном цикле.
Лемма о рукопожатиях — положение теории графов, согласно которому любой конечный неориентированный граф имеет чётное число вершин нечётных степеней. Лемма берёт название от популярной аналогии: в группе людей, некоторые из которых пожимают друг другу руки, чётное число людей поприветствовало таким образом нечётное число коллег.
Обобщённый четырёхугольник — это структура инцидентности, главное свойство которой — отсутствие треугольников (однако структура содержит много четырёхугольников). Обобщённый четырёхугольник является по определению полярным пространством ранга два. Обобщённые четырёхугольники являются обобщёнными многоугольниками с n = 4 и почти 2n-угольниками с n = 2. Они являются также в точности частичными геометриями pg(s,t,α) с α = 1.
В теории графов графом-циклом называется граф, состоящий из единственного цикла, или, другими словами, некоторого числа вершин, соединённых замкнутой цепью. Граф-цикл с n вершинами обозначают как Cn. Число вершин в Cn равно числу рёбер и каждая вершина имеет степень 2, то есть любая вершина инцидентна ровно двум рёбрам.
Подробнее: Граф-цикл
Хроматический многочлен — многочлен, изучаемый в алгебраической теории графов. Многочлен считает число раскрасок графа как функции от числа цветов. Многочлен первоначально определил Джордж Дейвид Биркгоф в попытке атаки на проблему четырёх красок. Многочлен обобщили Х. Уитни и У. Т. Тат до многочлена Тата, связав его с моделью Поттса статистической физики.