Связанные понятия
Характеризация запрещёнными графами — это метод описания семейства графов или гиперграфов путём указания подструктур, которым запрещено появляться внутри любого графа в семействе.
В теории графов неориентированный граф H называется минором графа G, если H может быть образован из G удалением рёбер и вершин и стягиванием рёбер.
Подробнее: Минор графа
Теорема Робертсона — Сеймура (также называемая теоремой о минорах графа ) утверждает, что неориентированные графы, частично упорядоченные отношением минорности, образуют вполне квазиупорядоченное множество. Эквивалентно, любое семейство графов, замкнутое по минорам, может быть определено конечным набором запрещённых миноров, аналогично как теорема Вагнера определяет планарные графы как графы, не имеющие в качестве миноров полный граф K5 и полный двудольный граф K3,3.
Полный двудольный граф (биклика) — специальный вид двудольного графа, у которого любая вершина первой доли соединена со всеми вершинами второй доли вершин.
В теории графов петерсеново семейство графов — это набор из семи неориентированных графов, включающий граф Петерсена и полный граф K6. Петерсеново семейство названо именем датского математика Юлиуса Петерсена, поскольку в набор входит граф Петерсена.
Сильная гипотеза о совершенных графах — это характеризация запрещёнными графами совершенных графов как в точности тех графов, которые не имеют ни нечётных дыр (порождённых циклов нечётной длины), ни нечётных антидыр (дополнений нечётным дырам). Гипотезу высказал Берж в 1961. Доказательство Марии Чудновской, Нила Робертсона, Пола Сеймура и Робина Томаса было заявлено в 2002 и опубликовано ими в 2006.
Порождённый подграф графа — это другой граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.
В теории графов совершенным графом называется граф, в котором хроматическое число любого порождённого подграфа равно размеру максимальной клики этого подграфа. Благодаря строгой теореме о совершенных графах, с 2002 года известно, что совершенные графы — это то же самое, что и графы Бержа. Граф G является графом Бержа если ни G, ни его дополнение не имеет порождённых циклов нечётной длины (5 и более рёбер).
Подробнее: Совершенный граф
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.
Подробнее: Рёберный граф
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
Снарк в теории графов — связный кубический граф без мостов c хроматическим индексом 4. Другими словами, это граф, в котором каждая вершина имеет три соседние вершины и рёбра нельзя выкрасить только в три цвета, так чтобы два ребра одного цвета не сходились в одной вершине. (По теореме Визинга хроматический индекс кубического графа равен 3 или 4.) Чтобы избежать тривиальных случаев, снарками часто не считают графы, имеющие обхват меньше 5.
В теории графов outerplanar graph — это граф, допускающий планарную диаграмму, в которой все вершины принадлежат внешней грани.
Подробнее: Внешнепланарный граф
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре (на этой странице).
Подробнее: Глоссарий теории графов
Мост — ребро в теории графов, удаление которого увеличивает число компонент связности. Такие рёбра также известны как разрезающие рёбра, разрезающие дуги или перешейки. Эквивалентное определение — ребро является мостом в том и только в том случае, если оно не содержится ни в одном цикле.
Структурная теорема графов — это главный результат в области теории графов. Результат устанавливает глубокую и фундаментальную связь между теорией миноров графов и топологическими вложениями. Теорема была сформулирована в семнадцати статьях из серии из 23 статей Нейла Робертсона и Пола Сеймура. Доказательство теоремы очень длинно и запутано. Каварабайаши и Мохар и Ловаш провели обзор теоремы в доступном для неспециалистов виде, описав теорему и её следствия.
Расщепляемый граф может иметь несколько разложений на клику и независимое множество. Так, путь a-b-c является расщепляемым и может быть разбит тремя разными способами...
Плана́рный граф — граф, который может быть изображён на плоскости без пересечения рёбер. Иначе говоря, граф планарен, если он изоморфен некоторому плоскому графу, то есть графу, изображённому на плоскости так, что его вершины — это точки плоскости, а рёбра — непересекающиеся кривые на ней. Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань, так называемая внешняя грань.
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
В теории графов
граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду (ребро, соединяющее две вершины цикла, но не являющееся его частью).
Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.)
Хромати́ческое число ́ гра́фа G — минимальное число цветов, в которые можно раскрасить вершины графа G так, чтобы концы любого ребра имели разные цвета. Обычно обозначается χ(G).
В теории графов
паросочетание или независимое множество рёбер в графе — это набор попарно несмежных рёбер.
В теории графов графом-циклом называется граф, состоящий из единственного цикла, или, другими словами, некоторого числа вершин, соединённых замкнутой цепью. Граф-цикл с n вершинами обозначают как Cn. Число вершин в Cn равно числу рёбер и каждая вершина имеет степень 2, то есть любая вершина инцидентна ровно двум рёбрам.
Подробнее: Граф-цикл
В теории графов стягивание ребра — это операция, которая удаляет ребро из графа, а до этого связанные ребром вершины сливаются в одну вершину. Стягивание ребра является фундаментальной операцией в теории о минорах графов. Отождествление вершин — другая форма этой операции с более слабыми ограничениями.
Кубический граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными.
Обхват в теории графов — длина наименьшего цикла, содержащегося в данном графе. Если граф не содержит циклов (то есть является ациклическим графом), его обхват по определению равен бесконечности.
Спектральная теория графов — направление в теории графов, изучающее свойства графов, характеристических многочленов, собственных векторов и собственных значений матриц, связанных с графом, таких, как его матрица смежности или матрица Кирхгофа.
Степень графа не следует путать с умножением графа на себя, который (в отличие от степени графа), в общем случае, имеет много больше вершин, чем исходный граф.
Неглубокий минор или минор ограниченной глубины — это ограниченный вид минора графа, в котором стянутые подграфы имеют малый диаметр. Неглубокие миноры ввели Плоткин, Рао и Смит, но они приписывают определение термина Чарльзу Лейзерсону и Сивану Толедо.
Сильно регулярный граф является дистанционно-регулярным с диаметром 2, но только в том случае, когда μ не равно нулю.
Связный граф — граф, содержащий ровно одну компоненту связности. Это означает, что между любой парой вершин этого графа существует как минимум один путь. Другими словами, нет изолированной вершины ( такой, которая не имеет соответствующих ей рёбер (называется "ребра, инцидентные вершине 1" (или 2) ).
В теории графов графом гиперкуба Qn называется регулярный граф с 2n вершинами, 2n−1n рёбрами и n рёбрами, сходящимися в одной вершине. Его можно получить как одномерный скелет геометрического гиперкуба. Например, Q3 — это граф, образованный 8 вершинами и 12 рёбрами трёхмерного куба. Граф можно получить другим образом, отталкиваясь от семейства подмножеств множества с n элементами путём использования в качестве вершин все подмножества и соединением двух вершин ребром, если соответствующие множества...
Подробнее: Граф гиперкуба
Гипотеза Тэйта утверждает, что любой 3-связный планарный кубический граф имеет гамильтонов цикл, проходящий через все его вершины. Гипотезу высказал в 1884 году П.Г. Тэйт и опровёрг в 1946 году У.Т. Татт, построив контрпример с 25 гранями, 69 рёбрами и 46 вершинами. Позднее, в 1988, Холтон и Маккей нашли меньший по размеру контрпример с 21 гранями, 57 рёбрами и 38 вершинами и показали, что этот граф минимален.
В теории графов графом пересечений называется граф, представляющий схему пересечений семейства множеств. Любой граф можно представить как граф пересечений, но некоторые важные специальные классы можно определить посредством типов множеств, используемых для представления в виде пересечений множеств.
Подробнее: Граф пересечений
Двудо́льный граф или бигра́ф — это математический термин теории графов, обозначающий граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части.
Автоморфизм графа есть отображение множества вершин на себя, сохраняющее смежность. Множество таких автоморфизмов образует вершинную группу графа или просто группу графа. Группа подстановок на множестве ребер называется реберной группой графа, которая тесно связана с вершинной...
В теории графов параллельно-последовательные графы — это графы с двумя различными вершинами, которые называются терминальными, образованные рекурсивно с помощью двух простых операций. Эти графы могут быть использованы для моделирования последовательного и параллельного соединения электрических цепей.
Подробнее: Параллельно-последовательный граф
В теории графов граф перестановки — это граф, вершины которого соответствуют элементам перестановки, а рёбра представляют пары элементов, следование которых стало обратным после перестановки. Графы перестановки можно определить геометрически как графы пересечений отрезков, концы которых лежат на двух параллельных прямых. Различные перестановки могут дать один и тот же граф перестановки. Заданный граф имеет единственное представление (с точностью до симметрии) если он является простым с точки зрения...
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
В теории графов обобщёнными графами Петерсена называется семейство кубических графов, образованное соединением вершин правильного многоугольника с соответствующими вершинами звезды. В семейство входит граф Петерсена и обобщает один из путей построения графа Петерсена. Семейство обобщённых графов Петерсена ввёл в рассмотрение в 1950 году Коксетер и этим графам дал имя в 1969 году Марк Воткинс.
Подробнее: Обобщённый граф Петерсена
Блоковый граф (кликовое дерево) — вид неориентированного графа, в котором каждая компонента двусвязности (блок) является кликой.
Путь в графе — последовательность вершин, в которой каждая вершина соединена со следующей ребром.
Периферийный цикл в неориентированном графе является, интуитивно, циклом, который не отделяет любую часть графа от любой другой части. Периферийные циклы (или, как они сначала назывались, периферийные многоугольники, поскольку Тат называл циклы «многоугольниками»), первым изучал Тат и они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).
Подробнее: Граф без клешней
Экстремальная теория графов — это ветвь теории графов. Экстремальная теория графов изучает экстремальные (максимальные или минимальные) свойства графов, удовлетворяющих определённым условиям. Экстремальность может относиться к различным инвариантам графов, таким как порядок, размер или обхват. В более абстрактном смысле теория изучает, как глобальные свойства графа влияют на локальные подструктуры графа.
Кликой неориентированного графа называется подмножество его вершин, любые две из которых соединены ребром. Клики являются одной из основных концепций теории графов и используются во многих других математических задачах и построениях с графами. Клики изучаются также в информатике — задача определения, существует ли клика данного размера в графе (Задача о клике) является NP-полной. Несмотря на эту трудность, изучаются многие алгоритмы для поиска клик.
Подробнее: Клика (теория графов)
Древесная ширина часто используется в качестве параметра в анализе параметрической сложности алгоритмов на графах. Графы с шириной дерева, не превосходящей k, называются частичными k-деревьями. Многие другие хорошо изученные семейства графов также имеют ограниченную ширину дерева.
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом...
Подробнее: Корона (теория графов)
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...