Связанные понятия
Фраза
группа лиева типа обычно означает конечную группу, которая тесно связана с группой рациональных точек редуктивной линейной алгебраической группы со значениями в конечном поле. Термин «группа лиева типа» не имеет общепризнанного точного определения, но важный набор конечных простых групп лиева типа точное определение имеет и они составляют большинство групп в классификации простых конечных групп.
Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру (подгруппа, подкольцо, в наиболее общем случае — подгруппа мультиоператорной группы), показывающая степень некоммутативности групповой операции.
Следующий
список содержит конечные группы малого порядка с точностью до изоморфизма групп.
Полная линейная группа векторного пространства V — это группа обратимых линейных операторов вида C: V → V. Роль групповой операции играет обычная композиция линейных операторов.
Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий...
Максимальная компактная подгруппа K топологической группы G — это компактное пространство с индуцированной топологией, максимальное среди всех подгрупп. Максимальные компактные подгруппы играют важную роль в классификации групп Ли и, особенно, в классификации полупростых групп Ли. Максимальные компактные подгруппы групп Ли в общем случае не единственны, но единственны с точностью до сопряжённости — они являются существенно сопряжёнными.
Действие группы на некотором множестве объектов позволяет изучать симметрии этих объектов с помощью аппарата теории групп.
Аменабельная группа — локально компактная топологическая группа G, в которой возможно ввести операцию усреднения на ограниченных функциях на этой группе, инвариантную относительно умножения на любой элемент группы.
Алгебраическая группа — это группа, являющаяся одновременно алгебраическим многообразием, причём групповая операция и операция взятия обратного элемента являются регулярными отображениями многообразий.
Группа G называется
просто приводимой, или SR-группой (от англ. simply reducible), если она обладает следующими свойствами: каждый элемент группы G сопряжён со своим обратным и в разложении тензорного произведения любых двух неприводимых представлений группы G каждое неприводимое представление входит не более одного раза. Этот класс групп был введён лауреатом нобелевской премии по физике Юджином Вигнером в связи с задачами на собственные функции уравнения Шрёдингера квантовой механики. Данный класс...
Монстр Тарского — бесконечная группа, каждая нетривиальная подгруппа которой является циклической группой фиксированного простого порядка.
Простая группа — группа, не имеющая нормальных подгрупп, отличных от всей группы и единичной подгруппы.
Спорадическая группа — одна из 26 исключительных групп в теореме о классификации простых конечных групп.
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Бесконечная группа — группа с бесконечным числом элементов, в противоположность конечным группам.
Гру́ппа Галуа ́ — группа, ассоциированная с расширением поля. Играет важную роль при исследовании расширений полей, в частности, в теории Галуа. Это понятие (в контексте группы перестановок корней многочлена) ввёл в математику Эварист Галуа в 1832 году.
Изоморфизм групп — взаимно-однозначное соответствие между элементами двух групп, сохраняющее групповые операции.
Полициклическая группа ― группа, обладающая полициклическим рядом, то есть субнормальным рядом с циклическими факторами. Эквивалентно, полициклическая группа — это разрешимая группа, являющаяся одновременно нётеровой.
В статье суммируется информация о классах дискретных групп симметрии евклидовой плоскости. Группы симметрии, приведённые здесь, именуются по трём схемам именования: междурародная нотация, орбифолдная нотация и нотация Коксетера.
Подробнее: Список плоских групп симметрии
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
АТ-группа или группа алёшинского типа — группа автоморфизмов бесконечного слойно однородного дерева, порожденная корневыми и продольными автоморфизмами (аналог активного и пассивного порождающего в сплетениях групп).
Точечная группа в трёхмерном пространстве — это группа изометрий в трёхмерном пространстве, не перемещающая начало координат, или группа изометрий сферы. Группа является подгруппой ортогональной группы O(3), группы всех изометрий, оставляющих начало координат неподвижным, или, соответственно, группы ортогональных матриц. O(3) сама является подгруппой евклидовой группы E(3) движений 3-мерного пространства.
n-Мерная
целочисленная решётка (или кубическая решётка), обозначается Zn, — это решётка в евклидовом пространстве Rn, точки которой являются n-кортежами целых чисел. Двумерная целочисленная решётка называется также квадратной решёткой. Zn является наиболее простым примером решётки корней. Целочисленная решётка является нечётной унимодулярной решёткой.
Степень роста группы — характеристика в теории групп, показывающая скорость прироста конечнопорождённых групп в виде класса функций, ставящих в соответствие количеству порождающих элементов порядок группы. Введена советским математиком Шварцем (1955) в рамках исследования вопроса о росте универсальных накрывающих римановых пространств и независимо от него американским математиком Милнором (1968) в связи с проблемами фундаментальных групп компактных римановых многообразий с ограничениями на кривизну...
Теорема Жордана теорема о конечных линейных группах гарантирует наличие большой коммутативной подгруппы в любой конечной линейной группе.
Таблица характеров — это двумерная таблица, строки которой соответствуют неприводимым представлениям группы, а столбцы которой соответствует классам сопряжённости элементов группы. Элементы матрицы состоят из характеров, следов матриц, представляющих группу элементов класса столбца в определяемом строкoй представлении группы.
Внутренний автоморфизм — это вид автоморфизма группы, определённый в терминах фиксированного элемента группы, называемого сопрягающим элементом. Формально, если G — группа, а a — элемент группы G, то внутренний автоморфизм, определённый элементом a — это отображение f из G в себя, определённое для всех x из G по формуле...
Символы Шёнфлиса — одно из обозначений точечных групп симметрии, наряду с символами Германа — Могена. Предложены немецким математиком Артуром Шёнфлисом в книге «Kristallsysteme und Kristallstruktur» в 1891.
Категория абелевых групп (обозначается Ab) — категория, объекты которой — абелевы группы, а морфизмы — гомоморфизмы групп. Является прототипом абелевой категории., в действительности, любая малая абелева категория может быть вложена в Ab.
Группа антисимметрии в теории симметрии — группа, состоящая из преобразований, которые могут менять не только геометрическое положение объекта, но и также его некоторую двухзначную характеристику. Такой двухзначной характеристикой может быть, например, заряд (плюс-минус), цвет (чёрный-белый), знак вещественной функции, направление спина (вверх-вниз).
Решётка (ранее использовался термин структура) — частично упорядоченное множество, в котором каждое двухэлементное подмножество имеет как точную верхнюю (sup), так и точную нижнюю (inf) грани. Отсюда вытекает существование этих граней для любых непустых конечных подмножеств.
Расшире́ние Галуа ́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
Группа
симметрии (также группа симметрий) некоторого объекта (многогранника или множества точек из метрического пространства) ― группа всех движений, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.
Орбиобра́зие — неформально говоря, это многообразие с особенностями, которые выглядят как фактор евклидова пространства по конечной группе.
Многообразие Шимуры (иногда многообразие Симуры) — аналог модулярной кривой в более высоких размерностях, который возникает как фактор эрмитова симметрического пространства по конгруэнтной подгруппе редуктивной алгебраической группе, определённой над Q. Термин «многообразие Шимуры» относится к высоким размерностям, в случае одномерных многообразий говорят о кривых Шимуры. Модулярные поверхности Гильберта и модулярные многообразия Зигеля находятся среди лучших известных классов многообразий Шимуры...
Диэдральная группа (группа диэдра) — группа симметрии правильного многоугольника, включающая как вращения, так и осевые симметрии. Диэдральные группы являются простейшими примерами конечных групп и играют важную роль в теории групп, геометрии и химии. Хорошо известно и совершенно тривиально проверяется, что группа, образованная двумя инволюциями с конечным числом элементов в области определения является диэдральной группой.
Универсальная алгебра — раздел математики, изучающий общие свойства алгебраических систем, отыскивая общие черты между такими алгебраическими конструкциями, как группы, кольца, модули, решётки, вводя присущие им всем понятия и общие для всех них утверждения и результаты. Является разделом, занимающим промежуточное положение между математической логикой и общей алгеброй, как реализующий аппарат математической логики в применении к общеалгебраическим структурам.
Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G...
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Система Штейнера (названа именем Якоба Штейнера) — вариант блок-схем, точнее, t-схемы с λ = 1 и t ≥ 2.
Инверсная группа — построение в теории групп, сменяющее аргументы бинарной групповой операции местами, используемое для определения правого действия.