Связанные понятия
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.
Подробнее: Граф единичных кругов
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Упоминания в литературе
Стремление выразить социально-экономический эффект количественно порождено, очевидно, тем, что в области определения экономической эффективности эффект выражается именно в одинаковых единицах, а варианты отбираются по максимальному количественно выраженному эффекту. Но теория экономической эффективности опирается на реальный, порождённый товарно-денежным механизмом количественно-стоимостной способ соизмерения экономических результатов труда и его затрат[48]. Традиционность, кажущаяся простота й надёжность такого подхода побуждают часть исследователей искать универсальную единицу измерения и для социально-экономических эффектов. Однако общественный механизм, породивший стоимостные (точнее, основанные на стоимости денежно-ценностные) оценки, вовсе не способен обеспечить стратегическую целенаправленность социалистического производства. Для того, чтобы общество развивалось по пути восхождения к своим стратегическим целям, необходимы иные способы управления воспроизводственными процессами и, следовательно, иные методы оценки эффективности. В комплексной оценке эффективности стоимостные меры, обусловленные товарностью планомерного социалистического производства, удовлетворительно служат лишь для соизмерения значимых для общества издержек и хозрасчётных результатов функционирования звеньев, но вовсе не для измерения успехов в социально-экономическом развитии. Планомерность социалистического товарного производства требует, чтобы эффективность производства оценивалась непременно в контексте его целенаправленности – по соотношению фактических результатов заданным. Признание такого рода эффектов, значимость которых для общества не может быть выражена стоимостным измерением, потребовала в свое время введения известного "правила тождества эффекта", чтобы методы сравнительной экономической эффективности были правомерны [8]. То, что теория экономической эффективности принимает в качестве условия,
ограничивающего сферу применения её методов, теория социально-экономической эффективности должна рассматривать в качестве своего специального предмета анализа.
Связанные понятия (продолжение)
Алгебраическая связность графа G — это второе из минимальных собственных значений матрицы Кирхгофа графа G. Это значение больше нуля в том и только в том случае, когда граф G является связным. Это следствие того факта, что сколько раз значение 0 появляется в качестве собственного значения матрицы Кирхгофа, из стольких компонент связности состоит граф. Величина этого значения отражает насколько хорошо связен весь граф и используется для анализа устойчивости и синхронизации сетей.
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
Интервальная размерность графа — это минимальная размерность, в которой заданный граф может быть представлен в виде графа пересечений гиперпрямоугольников (то есть многомерных прямоугольных параллелепипедов) с параллельными осям рёбрами. То есть должно существовать один-к-одному соответствие между вершинами графа и множеством гиперпрямоугольников, таких, что прямоугольники пересекаются тогда и только тогда, когда существует ребро, соединяющее соответствующие вершины.
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Сравнение топологий — это понятие, позволяющее «сравнивать» различные топологические структуры на одном и том же множестве. Множество всех топологий на фиксированном множестве образует частично упорядоченное множество относительно этого отношения.
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Доказательные вычисления — целенаправленные вычисления на ЭВМ, комбинируемые с аналитическими исследованиями, которые приводят к строгому установлению новых фактов и доказательству теорем.
Квазиньютоновские методы — методы оптимизации, основанные на накоплении информации о кривизне целевой функции по наблюдениям за изменением градиента, чем принципиально отличаются от ньютоновских методов. Класс квазиньютоновских методов исключает явное формирование матрицы Гессе, заменяя её некоторым приближением.
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
Вну́тренность множества в общей топологии — это совокупность всех внутренних точек. Обычно обозначается Int, вероятно, от англ. Interior. Иногда внутренность множества называют ядром.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
Коэффицие́нт асимметри́и в теории вероятностей — величина, характеризующая асимметрию распределения данной случайной величины.
В общей алгебре,
поле k называется совершенным если выполняется одно из следующих эквивалентных условий...
Признаковое описание объекта (англ. feature vector) — это вектор, который составлен из значений, соответствующих некоторому набору признаков для данного объекта. Значения признаков могут быть различного, не обязательно числового, типа. Является одним из самых распространённых в машинном обучении способов ввода данных.
Связное доминирующее множество и остовное дерево с максимальной листвой являются двумя тесно связанными структурами, определёнными на неориентированном графе.
Равноме́рная непреры́вность в математическом и функциональном анализе — это свойство функции быть одинаково непрерывной во всех точках области определения.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Лине́йная интерполя́ция — интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка . В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.
Группы
сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Степень трансцендентности расширения поля в общей алгебре — это величина, которая даёт грубую оценку «масштаба» расширения. Другими словами, чем больше степень трансцендентности, тем больше расширенное поле содержит трансцендентных (то есть, неалгебраических по отношению к исходному полю) элементов.
Матрица расстояний — это квадратная матрица типа «объект-объект» (порядка n), содержащая в качестве элементов расстояния между объектами в метрическом пространстве.
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Говорят, что семейство графов имеет ограниченное расширение, если все его миноры ограниченной глубины являются редкими графами. Много естественных семейств редких графов имеют ограниченное расширение. Близкое, но более сильное свойство, полиномиальное расширение, эквивалентно существованию теорем разбиения для этих семейств. Семейства с этими свойствами имеют эффективные алгоритмы для задач, в которые входят задача поиска изоморфного подграфа и проверка моделей для теории первого порядка для графов...
Подробнее: Ограниченное расширение графа
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Дифференциа́л (от лат. differentia — разность, различие) в математике — линейная часть приращения дифференцируемой функции или отображения.
Петля в топологическом пространстве X — это непрерывное отображение f единичного отрезка I = в X, такое что f(0) = f(1). Другими словами, это путь, начальная точка которого совпадает с конечной.