Связанные понятия
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Задача выполнимости формул в теориях (англ. satisfiability modulo theories, SMT) — это задача разрешимости для логических формул с учётом лежащих в их основе теорий. Примерами таких теорий для SMT-формул являются: теории целых и вещественных чисел, теории списков, массивов, битовых векторов и т. п.
Схема функциональной целостности (СФЦ) — это логически универсальное графическое средство структурного представления исследуемых свойств системных объектов. Описание аппарата схем функциональной целостности было впервые опубликовано Можаевым А. С. в 1982 году. По построению аппарат СФЦ реализует все возможности алгебры логики в функциональном базисе «И», «ИЛИ» и «НЕ». СФЦ позволяют корректно представлять как все традиционные виды структурных схем (блок-схемы, деревья отказов, деревья событий, графы...
Аппликативное программирование — один из видов декларативного программирования, в котором написание программы состоит в систематическом осуществлении применения одного объекта к другому. Результатом такого применения вновь является объект, который может участвовать в применениях как в роли функции, так и в роли аргумента и так далее. Это делает запись программы математически ясной. Тот факт, что функция обозначается выражением, свидетельствует о возможности использования значений-функций — функциональных...
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Комбина́торная ло́гика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений. В дискретной математике комбинаторная логика тесно связана с лямбда-исчислением, так как описывает вычислительные процессы.
Структурное прогнозирование или структурное обучение является собирательным термином для техник обучения машин с учителем, которые вовлекают предвидение структурных объектов, а не скалярных дискретных или вещественных значений.
Вычислительная среда (англ. computational environment) — это совокупность объектов, участвующих в вычислениях, причем каждый раз требуется определение того, что считается объектом, и что понимается под вычислениями, то есть трактовка этих терминов зависит от контекста употребления. Так, например, в программной инженерии под вычислительной средой понимается совокупность программных компонентов и сервисов, интегрируемых в рамках одного приложения (реализующего некоторый процесс в определенной предметной...
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
В информатике параллели́зм — это свойство систем, при котором несколько вычислений выполняются одновременно, и при этом, возможно, взаимодействуют друг с другом. Вычисления могут выполняться на нескольких ядрах одного чипа с вытесняющим разделением времени потоков на одном процессоре, либо выполняться на физически отдельных процессорах. Для выполнения параллельных вычислений разработаны ряд математических моделей, в том числе сети Петри, исчисление процессов, модели параллельных случайных доступов...
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Функциона́льное программи́рование — раздел дискретной математики и парадигма программирования, в которой процесс вычисления трактуется как вычисление значений функций в математическом понимании последних (в отличие от функций как подпрограмм в процедурном программировании).
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод
Полнота по Тьюрингу — характеристика исполнителя (множества вычисляющих элементов) в теории вычислимости, означающая возможность реализовать на нём любую вычислимую функцию. Другими словами, для каждой вычислимой функции существует вычисляющий её элемент (например, машина Тьюринга) или программа для исполнителя, а все функции, вычисляемые множеством вычислителей, являются вычислимыми функциями (возможно, при некотором кодировании входных и выходных данных).
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Хорновский дизъюнкт — дизъюнктивный одночлен с не более чем одним положительным литералом. Изучены Альфредом Хорном (англ. Alfred Horn) в 1951 году в связи с их важной ролью в теории моделей и универсальной алгебре. Впоследствии стали основой для языка логического программирования Пролог, в котором программа являются непосредственно набором хорновских дизъюнктов, а также нашли важные приложения в конструктивной логике и теории сложности вычислений.
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями, или моделями. Название теория моделей было впервые предложено Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Кореку́рсия — в теории категорий и информатике тип операции, дуальный к рекурсии. Обычно корекурсия используется (совместно с механизмом ленивых вычислений) для генерации бесконечных структур данных.
Комбинато́рное программи́рование (англ. function-level programming) — парадигма программирования, использующая принципы комбинáторной логики, то есть не требующая явного упоминания аргументов определяемой функции (программы) и использующая вместо переменных комбинаторы и композиции. Является особой разновидностью функционального программирования, но, в отличие от основного его направления, комбинаторное программирование не использует λ-абстракцию).
Иные значения см. разделе в Компьютерное моделирование.Теория вычислимости и теория сложности вычислений трактует модель вычисления (англ. model of computation) не только как определение множества допустимых операций, использованных для вычисления, но также и относительных издержек их применения. Охарактеризовать необходимые вычислительные ресурсы — время выполнения, объём памяти, а также ограничения алгоритмов или компьютера — можно только в том случае, если выбрана определённая модель вычислений...
Подробнее: Модель вычислений
Дискре́тная матема́тика — часть математики, изучающая дискретные математические структуры, такие, как графы и утверждения в логике.
Описательные ло́гики или дескрипцио́нные ло́гики(сокр. ДЛ, англ. description logics, иногда используется неточный перевод: дескрипти́вные логики) — семейство языков представления знаний, позволяющих описывать понятия предметной области в недвусмысленном, формализованном виде. Они сочетают в себе, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что...
Подробнее: Дескрипционная логика
Логика разделения , сепарационная логика (англ. separation logic) в информатике — формальная система, предназначенная для верификации программ, содержащих изменяемые структуры данных и указатели, расширение логики Хоара. Разработана Джоном Рейнольдсом (англ. John C. Reynolds), Питером О’Хирном (англ. Peter O'Hearn), Самином Иштиаком (англ. Samin Ishtiaq) и Хонсёком Яном (англ. Hongseok Yang) на основе работ Рода Бёрстола (англ. Rod Burstall). Язык утверждений логики разделения является специальным...
Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.
Подробнее: Снижение размерности
Формальные методы занимаются приложением довольно широкого класса фундаментальных техник теоретической информатики: разные исчисления логики, формальных языков, теории автоматов, формальной семантики, систем типов и алгебраических типов данных.
Мона́да — это абстракция линейной цепочки связанных вычислений. Монады позволяют организовывать последовательные вычисления.
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Вероятностно приблизительно корректное обучение (ВПК обучение, англ. Probably Approximately Correct learning, (PAC learning) в теории вычислительного обучения — это схема математического анализа машинного обучения. Схему предложил в 1984 Лесли Вэлиант.
Исчисление взаимодействующих систем (англ. Calculus of Communicating Systems, CCS, исчисление общающихся систем) в информатике — исчисление процессов, разработанное Робином Милнером в 1980 году. Исчисление работает с моделью неразделяемых коммуникаций между ровно двумя участниками. Формальный язык включает примитивы для описания параллельной композиции, выбора между действиями и рамки ограничений. CCS полезен для оценки качественной корректности свойств таких как взаимная блокировка или «живая блокировка...
Обобщённое программирование (англ. generic programming) — парадигма программирования, заключающаяся в таком описании данных и алгоритмов, которое можно применять к различным типам данных, не меняя само это описание. В том или ином виде поддерживается разными языками программирования. Возможности обобщённого программирования впервые появились в виде дженериков (обобщённых функций) в 1970-х годах в языках Клу и Ада, затем в виде параметрического полиморфизма в ML и его потомках, а затем во многих объектно-ориентированных...
Алгоритмическая теория информации — это область информатики, которая пытается уловить суть сложности, используя инструменты из теоретической информатики. Главная идея — это определить сложность (или описательную сложность, колмогоровскую сложность, сложность Колмогорова-Хайтина) строки как длину кратчайшей программы, которая выводит заданную строку. Строки, которые могут выводиться короткими программами, рассматриваются как не очень сложные. Эта нотация удивительно глубока и может быть использована...
Функциональный объект (англ. function object), также функтор, функционал и функционоид — распространённая в программировании конструкция, позволяющая использовать объект как функцию. Часто используется как callback, делегат.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Автоматическое доказательство (англ. Automated Theorem Proving, ATP, а также Automated deduction) — доказательство, реализованное программно. В основе лежит аппарат математической логики. Используются идеи теории искусственного интеллекта. Процесс доказательства основывается на логике высказываний и логике предикатов.
Секвенциальная логика — это логика памяти цифровых устройств. Название «секвенциальная» восходит к англ. sequential. Соответствующая логика может именоваться также как последовательностная, хотя последний термин по преимуществу употребляется в связи с логическими автоматами.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Случайное индексирование — это метод понижения размерности и один из подходов дистрибутивной семантики, основанный на убеждении, что варианты векторной модели (Vector Space Model) с высокой размерностью малоприменимы на практике и что модели не должны наращивать размерность при появлении не виденных ранее объектов (термов, документов и т. д.) Предполагается возможность проецирования модели с большими размерностями в пространство с меньшими — без ущерба для L2-метрик, если правильно подобрать итоговые...
Сверхтьюринговыми вычислениями (или гипервычислениями (англ. hypercomputation)) называются такие вычисления, которые не могут быть проделаны на машине Тьюринга. Они включают в себя разнообразные гипотетические методы, основанные на суперрекурсивных алгоритмах, а также некоторые другие типы вычислений — например, интерактивные вычисления. Термин гипервычисления (англ. hypercomputation) был впервые введён Джеком Коуплендом и Дианой Праудфут. Возможность физической реализации таких вычислений активно...
Подробнее: Сверхтьюринговые вычисления
Не путать с «симплекс-методом» из линейного программирования — методом оптимизации линейной системы с ограничениями.Метод Нелдера — Мида, также известный как метод деформируемого многогранника и симплекс-метод, — метод безусловной оптимизации функции от нескольких переменных, не использующий производной (точнее — градиентов) функции, а поэтому легко применим к негладким и/или зашумлённым функциям.
Подробнее: Метод Нелдера — Мида
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Формальная верификация криптографических протоколов — проверка криптографических протоколов на обеспечение требуемых свойств безопасности. Одной из составляющих такой проверки является определение стойкости протокола к атакам в предположении о надёжности криптографических примитивов, на которых он основывается. Для решения этой задачи разработан ряд подходов, основанных на различных формальных методах верификации. Общей чертой формальных методов является использование системного подхода к проблеме...
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Универсальная алгебра — раздел математики, изучающий общие свойства алгебраических систем, отыскивая общие черты между такими алгебраическими конструкциями, как группы, кольца, модули, решётки, вводя присущие им всем понятия и общие для всех них утверждения и результаты. Является разделом, занимающим промежуточное положение между математической логикой и общей алгеброй, как реализующий аппарат математической логики в применении к общеалгебраическим структурам.