Связанные понятия
На́трий (Na, лат. natrium) — химический элемент первой группы, третьего периода периодической системы Менделеева, с атомным номером 11. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета. На внешнем энергетическом уровне натрий имеет один электрон, который он легко отдаёт, превращаясь в положительно заряженный катион Na+. Единственным стабильным изотопом является 23Na. В свободном виде не встречается, но может быть получен из различных соединений. Натрий — шестой...
Ка́льций (Ca от лат. Calcium) — элемент второй группы (по старой классификации — главной подгруппы второй группы), четвёртого периода, с атомным номером 20. Простое вещество кальций — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета. Впервые получен в чистом виде Г. Дэви в 1808 году.
Фо́сфор (от др.-греч. φῶς — свет и φέρω — несу; φωσφόρος — светоносный; лат. Phosphorus) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) третьего периода периодической системы Д. И. Менделеева; имеет атомный номер 15. Элемент входит в группу пниктогенов. Фосфор — один из распространённых элементов земной коры: его содержание составляет 0,08—0,09 % её массы. Концентрация в морской воде 0,07 мг/л. В свободном состоянии не встречается из-за высокой химической...
Ма́гний — элемент второй группы (по старой классификации — главной подгруппы второй группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.
Бор (B, лат. borum) — химический элемент 13-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе III группы, или к группе IIIA) с атомным номером 5. Бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен.
Упоминания в литературе
Помимо царской водки золото растворяется также в горячей концентрированной селеновой кислоте H2SeO4, которая при этом восстанавливается до селенистой: 2Au + 6H2SeO4 = Au2(SeO4)3 +3H2SeO3 + 3H2O. Если к горячей серной кислоте добавить окислитель (нитрат, перманганат, хромовую кислоту, диоксид марганца и др.), такой раствор тоже будет действовать на золото. Намного легче золото растворяется уже при комнатной температуре (при доступе воздуха) в водных растворах цианидов щелочных и щелочноземельных металлов. Реакции способствует образование очень прочных комплексных цианидов: 4Au + 8КCN + 2H2O + O2 = 4К[Au(CN)2] + 4КOH. Этот процесс (цианирование), открытый в 1843 г. русским инженером П. Р. Багратионом, лежит в основе важного промышленного способа извлечения золота из руд. А при анодном растворении золота в растворе щелочи (КОН) образуется аурат
калия K[AuO2] и анодный осадок Au2O3. Как видим, золото далеко не так благородно, как это принято считать.
Итак, при выведении из организма кислых продуктов (а это фосфорная кислота, органические кислоты), чтобы сохранить натрий, клетки дистального канальца при помощи специальных химических реакций выделяют свободный ион водорода, который весьма активен. Ион водорода поступает из клеточек канальцев в просвет канальца и вытесняет натрий из его солей. Натрий благополучно возвращается в кровь, а в мочу отправляются кислые соли или свободные кислоты. Реакция мочи при этом бывает кислая, а сам процесс называется ацидогенезом. Но это способ имеет свои границы: он не работает в отношении сильных минеральных кислот (соляной, серной), а это чревато тем, что рН мочи может перейти нижнюю границу – рН = 4,5, еще как-то переносимую здоровой почкой. И вот, чтобы те самые нейтральные соли не выпали и вместе с собой не унесли драгоценный натрий и
калий , организм вырабатывает специальные катионы аммония, которые и вытесняют натрий и калий из их соединений и отправляют их обратно в кровь. Выделение кислых продуктов в виде аммониевых солей сберегает организму гораздо больше щелочных веществ, чем выделение их в виде кислых солей или свободных кислот, но происходит это медленнее.
Минеральные вещества. Минеральные вещества являются известными составными частями фруктов и овощей. Фрукты их содержат около 0,3—1%, немного больше их содержат овощи (0,5—2%). Очень много минеральных веществ содержат семена шиповника и орехов. Среди других в человеческом организме обязательно присутствуют кальций, фосфорная кислоты, железо,
калий , сера и магний. Также присутствуют, но в значительно меньшем количестве так называемые сопутствующие элементы, такие как бор, медь, цинк, мышьяк, олово и йод. Минеральные вещества не имеют никакой энергетической ценности, но все они, несомненно, нужны для обмена веществ и способствуют поддержанию так называемого кислотно-щелочного равновесия организма, т. е. регуляции равновесия между кислотами и щелочами. Некоторые из них, в основном кальций, фосфорная кислота и железо, участвуют в строительстве тканевых систем.
Минеральный обмен важен для синтеза тела бактерий. Для него необходимы не только азот и углерод, но и зольные элементы – сера, фосфор,
калий и кальций, а также микроэлементы – бор, молибден, цинк, марганец, кобальт, никель, йод, бром, медь и др. В состав цитоплазмы бактерий входит сера, которая участвует в синтетических реакциях в виде R-SH. Данная сера восстановленной формы обладает высокой реактивностью и легко поддается дегидрированию с последующим превращением в сложные соединения, которые при гидрировании восстанавливаются, благодаря чему регулируется окислительно-восстановительный потенциал в цитоплазме бактерии.
Следует учесть, что чем ниже сорт соли, тем она менее вредна. Например, в соли экстра содержание вредного хлорида натрия максимальное (99,7 %), а полезных солей
калия , магния и кальция минимальное – 0,01—0,02 %. Это последствия очистки. Но по иронии судьбы современный человек получает натрия в 1,5–2,5 раза больше, чем нужно, а калия и магния ему часто не хватает. Чтобы хоть как-то ослабить этот дисбаланс, медики придумали соль, в которой часть хлорида натрия заменена калием и магнием. Например, в такой соли, выпускаемой в России в упаковке «Пищевая соль с пониженным содержанием натрия. Йодированная», хлорида натрия лишь 68 %, хлористого калия целых 27 %, а сернокислого магния 5 % (это намного больше, чем просто в солях, менее очищенных).
Связанные понятия (продолжение)
Фтор (F, лат. fluorum) — химический элемент 17-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA) с атомным номером 9. Самый химически активный неметалл и сильнейший окислитель, самый лёгкий элемент из группы галогенов. Как простое вещество при нормальных условиях фтор представляет собой двухатомный газ (формула F2) бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор. Токсичен...
Хлори́ды — группа химических соединений, соли хлороводородной (соляной) кислоты HCl.
Ли́тий (Li, лат. lithium) — химический элемент первой группы, второго периода периодической системы с атомным номером 3. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета.
Ио́д (тривиальное (общеупотребительное) название — йод; от греч. ἰώδης — «фиалковый (фиолетовый)») — химический элемент с атомным номером 53. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в пятом периоде таблицы. Атомная масса элемента 126,90447 а. е. м.. Обозначается символом I (от лат. Iodum). Химически активный неметалл, относится к группе галогенов...
Ба́рий — элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 56. Обозначается символом Ba (лат. Barium). Простое вещество барий — мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью.
Ма́рганец — элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре). Простое вещество марганец — металл серебристо-белого цвета. Наряду с железом и его сплавами относится к чёрным металлам. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной...
Се́ра — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.
Аммоний — полиатомный катион с химической формулой NH4+. Аммоний с анионами образует соли аммония, аммониевые соединения, последние входят в большой класс ониевых соединений. Ион аммония NH4+ является правильным тетраэдром с азотом в центре и атомами водорода в вершинах тетраэдра. Размер иона — 1,43 Å.
Бром (от др.-греч. βρῶμος — «вонючка», «вонючий») — химический элемент с атомным номером 35. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в четвёртом периоде таблицы. Атомная масса элемента 79,901...79,907 а. е. м. . Обозначается символом Br (от лат. Bromum). Химически активный неметалл, относится к группе галогенов. Простое вещество бром при нормальных...
Хлори́д на́трия или хлористый натрий (NaCl) — натриевая соль соляной кислоты. Известен в быту под названием поваренной соли, основным компонентом которой и является. Хлорид натрия в значительном количестве содержится в морской воде, придавая ей солёный вкус. Встречается в природе в виде минерала галита (каменной соли). Чистый хлорид натрия представляет собой бесцветные кристаллы, но с различными примесями его цвет может принимать голубой, фиолетовый, розовый, жёлтый или серый оттенок.
Хлор (от греч. χλωρός — «жёлто-зелёный») — химический элемент с атомным номером 17. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в третьем периоде таблицы. Атомная масса элемента 35,446...35,457 а. е. м. . Обозначается символом Cl (от лат. Chlorum). Химически активный неметалл. Входит в группу галогенов.
Со́ли — сложные вещества, которые в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков. ИЮПАК определяет соли как химические соединения, состоящие из катионов и анионов. Есть ещё одно определение: солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.
Стро́нций — химический элемент с атомным номером 38. Принадлежит к 2-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе II группы, или к группе IIA), находится в пятом периоде таблицы. Атомная масса элемента 87,62(1) а. е. м.. Обозначается символом Sr (от лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью...
Фтори́ды — химические соединения фтора с другими элементами. Фториды известны для всех элементов, кроме гелия и неона. К фторидам относят как бинарные соединения — ионные фториды (соли фтороводородной кислоты и металлов, ковалентные фториды переходных металлов в высших степенях окисления и фториды неметаллов), так и сложные неорганические соединения (фторангидриды кислот, комплексные фториды, гидрофториды металлов, фторированный графит).
Соля́ная кислота ́ (также хлороводоро́дная, хлористоводоро́дная кислота) — раствор хлороводорода (HCl) в воде, сильная одноосновная кислота. Бесцветная, прозрачная, едкая жидкость, «дымящаяся» на воздухе (техническая соляная кислота — желтоватого цвета из-за примесей железа, хлора и пр.). В концентрации около 0,5 % присутствует в желудке человека. Соли соляной кислоты называются хлоридами.
Це́зий (химический символ — Cs; лат. Caesium) — элемент главной подгруппы первой группы шестого периода периодической системы химических элементов Д. И. Менделеева, атомный номер — 55. Простое вещество цезий — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).
Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы): литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.
Ка́дмий — элемент двенадцатой группы (в устаревшей классификации — побочной подгруппы второй группы), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 48. Обозначается символом Cd (лат. Cadmium). Простое вещество кадмий при нормальных условиях — мягкий ковкий тягучий переходный металл серебристо-белого цвета. Устойчив в сухом воздухе, во влажном на его поверхности образуется плёнка оксида, препятствующая дальнейшему окислению металла. Кадмий и его соединения...
Щёлочноземе́льные мета́ллы — химические элементы 2-й группы периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra), унбинилий (Ubn).
Гидрокси́ды (гидроо́киси, водокиси) — неорганические соединения, содержащие в составе гидроксильную группу -OH. Известны гидроксиды почти всех химических элементов; некоторые из них встречаются в природе в виде минералов. Гидроксиды щелочных и щёлочноземельных металлов, а также аммония являются растворимыми и называются щелочами.
Ортофо́сфорная кислота ́ (фо́сфорная кислота́) — неорганическая кислота средней силы с химической формулой H3PO4, которая при стандартных условиях представляет собой бесцветные гигроскопичные кристаллы. Обычно ортофосфорной (или просто фосфорной) кислотой называют 85 %-ый водный раствор (бесцветная сиропообразная жидкость без запаха). Растворима в этаноле и других растворителях.
Сероводоро́д (серни́стый водоро́д, сульфи́д водоро́да, дигидросульфи́д) — бесцветный газ со сладковатым вкусом, обеспечивающий характерный неприятный тяжёлый запах тухлых яиц (тухлого мяса). Бинарное химическое соединение водорода и серы. Химическая формула — H2S. Плохо растворим в воде, хорошо — в этаноле. В больших концентрациях ядовит. Огнеопасен. Концентрационные пределы воспламенения в смеси с воздухом составляют 4,5—45 % сероводорода. Используется в химической промышленности для синтеза некоторых...
Руби́дий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий — мягкий легкоплавкий щелочной металл серебристо-белого цвета.
Селе́н — химический элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), 4-го периода в периодической системе, имеет атомный номер 34, обозначается символом Se (лат. Selenium), хрупкий блестящий на изломе неметалл чёрного цвета (устойчивая аллотропная форма, неустойчивая форма — киноварно-красная). Относится к халькогенам.
Щаве́левая кислота , также этандиóвая кислота — органическое соединение, двухосновная предельная карбоновая кислота, с формулой HOOC-COOH, простейшая двухосновная кислота, первый член гомологического ряда двухосновных предельных карбоновых кислот. Принадлежит к сильным органическим кислотам. Обладает всеми химическими свойствами, характерными для карбоновых кислот. Соли и сложные эфиры щавелевой кислоты называются оксалатами. В природе содержится в щавеле, ревене, карамболе и некоторых других растениях...
Вана́дий — химический элемент с атомным номером 23. Принадлежит к 5-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе V группы, или к группе VB), находится в четвёртом периоде таблицы. Атомная масса элемента 50,9415(1) а. е. м.. Обозначается символом V (от лат. Vanadium). Простое вещество ванадий — пластичный металл серебристо-серого цвета.
Неорганические сульфиды (от лат. sulphur — сера) — класс химических соединений, представляющих собой соединения металлов (а также ряда неметаллов В, Si, Р, As) с серой (S), где она имеет степень окисления −2. Могут рассматриваться как соли сероводородной кислоты H2S. Свойства сульфидов сильно зависят от металлов, входящих в их состав.
Ко́бальт — химический элемент с атомным номером 27. Принадлежит к 9-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе VIII группы, или к группе VIIIB), находится в четвёртом периоде таблицы. Атомная масса элемента 58,933194(4) а. е. м.. Обозначается символом Co (от лат. Cobaltum). Простое вещество кобальт — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом. Существует в двух кристаллических...
Мышьяковая кислота — (ортомышьяковая кислота) H3AsO4, трехосновная кислота средней силы. Легко растворима в воде, из растворов кристаллизуется в виде кристаллогидрата H3AsO4·0,5Н2O. Предполагается существование метамышьяковой (HAsO3) и пиромышьяковой (H4As2O7) кислот. Кислота и все ее соли ядовиты.
Катио́н — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион аммония, Ca2+ — двухзарядный катион кальция. В электрическом поле, катионы притягиваются к отрицательному электроду — катоду.
Кремниевые кислоты — очень слабые, малорастворимые в воде кислоты общей формулы nSiO2•mH2O.
Мышья́к (лат. Arsenicum, химический символ — As) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) четвёртого периода периодической системы; имеет атомный номер 33. Простое вещество представляет собой хрупкий полуметалл стального цвета с зеленоватым оттенком (в серой аллотропной модификации). Яд и канцероген.
Анио́н — отрицательно заряженный ион. Отрицательный заряд обусловлен избытком электронов по сравнению с количеством протонов. Заряд аниона дискретен и выражается в единицах элементарного отрицательного электрического заряда; например, Cl − — однозарядный анион, а остаток серной кислоты SO42− — двузарядный анион. Анионы имеются в растворах большинства солей, кислот и оснований, в газах, например, H+, а также в кристаллических решётках соединений с ионной связью, например, в кристаллах поваренной соли...
Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами также является класс минералов, представляющих собой соединения металла с кислородом (см. Окислы).
Азо́т (N, лат. nitrogenium) — химический элемент 15-й группы, второго периода периодической системы с атомным номером 7. Относится к пниктогенам. Как простое вещество представляет собой двухатомный газ без цвета, вкуса и запаха. Один из самых распространённых элементов на Земле. Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов. Основной компонент воздуха (78,09 % объёма), разделением которого получают промышленный азот (более ¾ идёт на синтез аммиака). Применяется...
Ртуть (Hg, от лат. Hydrargyrum) — элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы). Простое вещество ртуть — переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты, контаминант. Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся...
Иодиды — бинарные соединения иода с менее электроотрицательными элементами. Иодиды металлов могут рассматриваться как соли иодоводородной кислоты HI.
Хром — элемент побочной подгруппы 6-й группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром — твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам.
Та́ллий — элемент 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы III группы), шестого периода, атомный номер 81. Обозначается символом Tl (лат. Thallium). Относится к группе тяжёлых металлов. Простое вещество таллий — мягкий чрезвычайно токсичный металл серебристо-белого цвета с голубоватым оттенком.
Ви́смут — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) шестого периода периодической системы химических элементов Д. И. Менделеева; имеет атомный номер 83. Обозначается символом Bi (лат. Bismuthum). Простое вещество представляет собой при нормальных условиях блестящий серебристый с розоватым оттенком металл.
Ланта́н — химический элемент побочной подгруппы третьей группы шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 57, атомная масса — 138,9055. Обозначается символом La (лат. Lanthanum). Простое вещество лантан — блестящий металл серебристо-белого цвета, относится к редкоземельным элементам.
Иодоводород HI — бесцветный удушливый газ (при нормальных условиях), сильно дымит на воздухе. Хорошо растворим в воде, образует азеотропную смесь с Ткип 127 °C и концентрацией HI 57 %. Неустойчив, разлагается при 300 °C.
Хромовая кислота — кристаллическое вещество красного цвета. Окрашивает раствор в жёлтый цвет. Выделена в свободном состоянии при охлаждении насыщенных водных растворов хромата. Химическая формула H2CrO4. Соли хромовой кислоты называются хроматами. Токсична, канцерогенна.
Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или более элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат).
Хими́ческая фо́рмула — условное обозначение химического состава и структуры соединений с помощью символов химических элементов, числовых и вспомогательных знаков (скобок, тире и т. п.). Химические формулы являются составной частью языка химии, на их основе составляются схемы и уравнения химических реакций, а также химическая классификация и номенклатура веществ. Одним из первых начал использовать их русский химик А. А. Иовский.
Упоминания в литературе (продолжение)
Пятнадцать лет назад ученый Патрик Фланаган создал микрокластеры. Это тонкодисперсные отрицательно заряженные коллоиды. Они улучшают характеристики жидкостей, которые окружают клетки организма человека. Микрокластеры приготовлены из употребляемых в пищу минералов. Позднее Фланаган открыл способ получения микрокластеров путем добавления водорода, который имеет на внешней оболочке дополнительные электроны. Полученный гидрид был назван микрогидрином. Микрогидрин обладает самой мощной антиоксидантной активностью (по сравнению с витаминами C и E, бета-каротином, селеном и экстрактом из зерен винограда или сосновой коры). Добавление микрогидрина или нанокластеров Фланагана (кремний, карбонат
калия , сульфат магния) к биологически активным добавкам повышает их усвояемость организмом.
Известно, что подавляющее количество всех встречающихся в природе химических элементов (81) обнаружены в организме человека. 12 элементов называют структурными, так как они составляют 99 % элементного состава человеческого организма (углерод, кислород, водород, азот, кальций, магний, натрий,
калий , сера, фосфор, фтор, хлор). При этом основным строительным материалом являются четыре элемента: азот, водород, кислород и углерод. Остальные элементы, находясь в организме в незначительных по объему количествах, играют важную роль, влияя на здоровье и состояние нашего организма.
Вводные пояснения. В соответствии с техническими условиями, березовый натуральный сок представляет собой бесцветную прозрачную жидкость с плотностью 1,003 без посторонних примесей и включений, с приятным сладковатым привкусом. В его состав входят 0,5…2,0 % виноградного сахара (фруктоза и в небольшом количестве глюкоза), 0,01…0,02 % минеральных солей
калия , кальция, железа, меди и других, а также около 0,0021 % соединений азота. Всего в березовом соке обнаружено 22 элемента, из которых четыре относятся к макроэлементам и 18 – к микроэлементам. Многие из последних (медь, кобальт, цинк, железо и никель) в той или иной мере принимают участие в активизации ферментов.
Согласно научным исследованиям в пиве присутствуют такие минеральные компоненты, как фосфор, магний,
калий , хлор, сера и кальций. При употреблении этого напитка в больших дозах благодаря наличию в нем воды и калия происходит стимуляция работы мочевыделительной системы, что, в конечном итоге, способствует выведению из организма хлора и натрия.
Различие между живой и неживой природой отчетливо проявляется в их химическом составе. Так, земная кора на 90 % состоит из кислорода, кремния, алюминия и натрия (O, Si, Al, Na), а в живых организмах около 95 % составляют углерод, водород, кислород и азот (C, H, O, N). Кроме того, к этой группе макроэлементов относятся еще восемь химических элементов: Na – натрий, Cl – хлор, S – сера, Fe – железо, Mg – магний, P – фосфор, Ca – кальций, K –
калий , содержание которых исчисляется десятыми и сотыми долями процента. В гораздо меньших количествах встречаются столь же необходимые для жизни микроэлементы: Cu – медь, Mn – марганец, Zn – цинк, Mo – молибден, Co – кобальт, F – фтор, J-йод и др.
Ионы
калия обладают щелочными свойствами. Эти ионы при кислотно-щелочном равновесии находятся внутри клетки – в ее плазме. Ионы хлора обладают кислотными свойствами; в норме они находятся вне клетки. Ионы калия и хлора, щелочность и кислотность которых почти одинакова, являются основными стабилизаторами кислотно-щелочного равновесия клетки и ее энергетического состояния. Караваев нередко полемически вопрошал: «Если суточная норма калия равна примерно 2 г, а калий является партнером хлора, то почему же нужно вводить в организм дополнительное количество хлора с солью?»
В ходе очистки в итоговом продукте становится больше органических частей: углерода, кислорода, водорода, азота, присутствующих в нем в виде различных кислот, белков и смол. Неорганические же части – минералы кальция, натрия,
калия , магния, алюминия, рубидия, цезия, бария, олова, хрома, сурьмы и многого другого – частично выводятся.
В состав стекла входят кремнезем, оксиды алюминия, бора,
калия , кальция, магния, натрия, свинца и др. Каждый оксид придает стеклу определенные свойства. В состав современных стекол вводят 3-10 и более оксидов, так как к стеклам предъявляются самые разнообразные требования. Например, художественное стекло для декоративной обработки должно быть чистым, прозрачным, отлично преломляющим световые лучи, окрашивающимся в разные цвета. В настоящее время в производстве стекла нашли применение большинство элементов периодической системы Д.И.Менделеева.
Во-первых, в поисках пропитания – необходимых микроэлементов и электронов – для обеспечения обмена веществ бактерии (а кроме них в архее никого пока не было) разлагали горные породы и минералы. Извлекать определенные элементы можно с помощью ферментов, которые, в отличие от химических катализаторов, способны ускорять реакции при обычных условиях, однако требуются в незначительных количествах даже при катализе большой массы вещества, и хелатных комплексов (от греч. ?ηλ? – раздвоенный; такие молекулы структурно похожи на клешни, которые прочно удерживают ионы металлов). Свидетельства бактериальной деятельности навсегда запечатлены в древних базальтах в виде субмиллиметровых в диаметре извилистых ходов, в которых сохранились глинистые минералы – следы переработки базальта, а иногда и органическое вещество (конечно, только в виде почти кристаллических сгустков органического углерода – керогенов). Подобные следы, чтобы быть уверенными в их принадлежности микробам, ученые отыскали и в свежем вулканическом стекле: поскольку, кроме кремнезема, в нем содержится большое количество редких в окружающей среде элементов (например, закисное железо, Fe2+), как только базальтовая лава начинает остывать, первые же попавшие на ее поверхность бактериальные споры прорастают, и начинается бурное пиршество. (Каждый кубометр современного базальтового стекла – с содержанием до 17 % железа – может пропитать до 2,5 × 1016 анаэробных железобактерий.) Во-первых, бактерии ускоряют выветривание силикатных минералов (подобных вышеназванным пироксенам, оливинам, плагиоклазам) на порядок и проникают в них гораздо глубже, чем любые активные вещества под действием физических и химических сил. По прошествии всего нескольких лет горная порода превращается в насыщенное водой «нанорешето», разуплотняется, а такие продукты ее выветривания, как иллитовые и смектитовые глины, представляют собой субстрат-накопитель, ускоряющий в морской среде осаждение ионов
калия . В дальнейшем новообразованная минеральная затравка способствует выплавке гранитного материала вместо базальтового.
Основу морской соли представляет хлористый натрий, но в отличие от каменной соли в ее состав входит и природный комплекс биологически активных макроэлементов и микроэлементов. При этом натрий,
калий , магний, кальций, а также железо, литий, хром, марганец, медь и др. пребывают в идеально сбалансированном соотношении. Нередко в составе морской соли можно обнаружить частички глины, водорослей и даже вулканического пепла. Некоторую горчинку морская соль получает благодаря тому, что содержит хлористый магний и сернокислый магний.
Минеральные вещества поступают в организм человека с пищевыми продуктами и водой. Концентрация минеральных веществ в организме не одинакова, она меняется в зависимости от возраста, состояния здоровья, места проживания и условий питания. Если содержание одних химических элементов исчисляется в тканях человека граммами (макроэлементов), то концентрация большинства других элементов в тканях составляет от 0,01 до 0,0001 г (микроэлементов) или 0,000 001 г и ниже (ультрамикроэлементов). Макроэлементы нашего организма – это кальций (до 2 % массы тела), фосфор (около 700 г), магний (около 25 г при средней массе тела в 70 кг), а также натрий,
калий , сера, хлор. К микроэлементам относят железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, серебро, бор, ванадий, германий.
Минеральные вещества мяса рыбы очень разнообразны по составу, но по количеству составляют лишь в пределах 1,2–1,5 %. Особенно богатый минеральный состав имеет океаническая рыба, так как в морской воде содержатся практически все известные нам минеральные вещества. Рыба избирательно накапливает в своем теле и органах минеральные вещества из среды обитания. Преобладающие минеральные вещества рыбы: макроэлементы – натрий,
калий , хлор, кальций, фосфор, магний, сера, микроэле—менты, йод, медь, железо, марганец, бром, алюминий, фтор; ультрамикроэлементы: цинк, кобальт, стронций, уран.
Очистка воды от железа может проводиться с помощью окисления, причем эта операция может проводиться разными веществами. Окисление может происходить: воздухом в установках аэрации; хлором; перманганатом
калия ; перекисью водорода; озоном; алюмосиликатами. В результате окисления растворенное железо осаждается и фильтруется с помощью автоматизированного водоочистного оборудования.
Пригодная для питья вода, может быть водопроводной, дождевой, речной, колодезной, родниковой, озерной. Ее химический состав является достоянием природы конкретной местности и геологической породы. Качество питьевой определяется ее органолептическими свойствами: прозрачностью, температурой, цветом, запахом, вкусом, жесткостью. Примеси, содержащиеся в воде, могут быть полезными и вредными. Полезные вещества необходимо сохранять, независимо от способа очистки воды. К ним относятся соли
калия , натрия, кальция и магния. На российских землях большинство подземных вод обладают жесткостью и содержат повышенную концентрацию железа и марганца.
Искусственную соду научились получать в XVIII веке. Для этого потребовалось определить состав вещества, выделив его в чистом виде. В 1736 году химик Анри Луи Дюамель де Монсо, используя воду из содовых озер, методом кристаллизации выделил чистую соду. Им было установлено, что в ее состав входит химический элемент «натр». В 1737 году Дюамель и Андреас Сигизмунд Маргграф доказали, что сода и карбонат
калия – разные вещества.
В состав бентонитовых глин входят такие необходимые организму элементы, как железо, магний, марганец,
калий , натрий, сера, кремний, медь, барий, фосфор, цинк и многие другие, которые в настоящее время приходится дополнительно вводить в рацион животных.
На организм минеральные элементы пищи влияют по-разному. Например, кальций, магний, натрий,
калий оказывают преимущественно щелочное действие, а фосфор, сера, хлор – кислотное. Поэтому в зависимости от минерального состава потребляемых человеком продуктов в организме происходят соответствующие сдвиги щелочного либо кислотного характера. Кислый вкус продуктов не указывает на преобладание в них кислых элементов. Так, многие фрукты, кислые на вкус, дают организму не кислые, а щелочные валентности. Эти продукты содержат соли органических кислот, которые, легко окисляясь в организме, освобождают щелочные катионы. «Кислая» диета рекомендуется при лечении мочекаменной болезни, а «щелочная» – при недостаточности кровообращения в почках и печени, при тяжелых формах сахарного диабета и других заболеваниях.
Минеральные вещества составляют 2 – 5 % сухого вещества зерна. В состав зерна входят макроэлементы: фосфор, магний,
калий , кальций, натрий, железо, селен, алюминий, кремний; микроэлементы: марганец, бор, хром, медь, цинк, барий, йод, литий, бром, молибден, кобальт; ультрамикроэлементы: селен, кадмий, ртуть, серебро, золото, радий. Минеральные вещества, сконцентрированные, как и витамины, в оболочке зерна и зародыше, при обычном помоле большей частью удаляются. Например, железа в пшеничном хлебе из цельного зерна в 5 раз больше, чем в изделиях из муки высшего сорта. И какой хлеб, спрашивается, лучше кушать больному с пониженным гемоглобином? Это не значит, что мы предлагаем вам категорически отказываться от выписанных врачом препаратов железа. Просто у них, как у любого химического препарата, есть побочные эффекты. Есть ли они у цельнозернового хлеба, от которого даже потолстеть нельзя? Возможно, если такая пища вместе с проростками пшеницы станет постоянной частью вашего рациона, гемоглобин просто не будет «падать», и нужда в аптечных препаратах не возникнет. Кстати, анемия на фоне заболеваний органов дыхания – это очень серьезно. Ведь организм, и так получающий теперь вследствие болезни кислорода меньше, чем обычно, начинает просто «задыхаться» из-за того, что эритроцитов, способных разнести по организму поступающий в легкие кислород, слишком мало. А во время недуга кислород просто необходим, чтобы «сжигались», перерабатывались токсины, обеспечивалась активная работа борющихся с инфекцией антител, лейкоцитов, поддерживалось обычное состояние всех органов и систем организма. Чем выше уровень гемоглобина (в пределах нормы, разумеется), тем большее количество кислорода, попавшего в легкие, доставляется кровью в органы, тем легче организму бороться с «захватчиком».
Основными элементами минерального питания растений являются азот, фосфор,
калий , кальций, магний, железо, сера. Требуются они в больших количествах, поэтому и называются макроэлементами. Элементы же, необходимые растениям в небольшом количестве, названы микроэлементами – бор, марганец, медь, молибден, цинк. Недостаток или избыток этих элементов влияет на развитие растений.
Известно, что соли органических кислот, сгорая в организме (как и при озолении вина), превращаются в карбонаты. Поэтому вино, несмотря на кислую реакцию и кислый вкус, накапливает в организме щелочи. Литр виноградного сока приравнивается к 6 граммам углекислой соды. Литр вина эквивалентен несколько меньшему количеству соды. При этом благоприятно большее содержание
калия в вине, чем натрия, так как калийные соли накапливаются клетками.
В Северо-Западном регионе почвы лучше всего раскислять доломитовой мукой, содержащей не только кальций, но и магний, который входит в группу основных элементов питания и является необходимым химическим элементом в хлорофилле. Так как его требуется гораздо меньше, чем азота, фосфора,
калия , и он не входит, как правило, в состав готовых удобрительных смесей, многие садоводы его недооценивают и не вносят, а в почвах, особенно песчаных, его явно недостаточно.
В Северо-Западном регионе почвы лучше раскислять доломитовой мукой, содержащей не только кальций, но и магний, который входит в группу основных элементов питания и является необходимым химическим элементом в хлорофилле. Так как его надо гораздо меньше, чем азота, фосфора,
калия , и он не входит, как правило, в состав готовых удобрительных смесей, многие садоводы его недооценивают и не вносят, хотя в почвах, особенно песчаных, его явно недостаточно.
Напоследок несколько слов о другом распространенном удобрении – соломе (ржаной, пшеничной, овсяной). Возможно, вы будете удивлены, узнав о том, что в ней содержится не менее 85 % ценных питательных веществ (азота, фосфора,
калия , марганца, кальция, бора, меди, серы, цинка, молибдена), которые способствуют повышению плодородия почвы. Однако существует одно но: при разложении большая часть азота пропадает, некоторое его количество вымывается осадками после внесения в почву, поэтому солому рекомендуется применять в компостах.
Геотермальные воды температурой 20–40 °C содержат ценнейшие для жизнедеятельности организма минеральные вещества: кальций,
калий , медь, магний, цинк, железо, марганец, кремний. Каждый их этих микроэлементов оказывает на организм определенное воздействие. Так, ионы меди и магния блокируют активность энзимов, которые разрушают коллагеновые волокна и способствуют разглаживанию морщин. Магний играет существенную роль в восстановлении структуры кожи, а медь и железо обеспечивают клетки кожи жизненной энергией. Калий и кальций необходимы для нормальной работы мембран клеток.
Виды удобрений можно определять при помощи уксусной кислоты: натриевая и кальциевая селитра в ней нерастворимы, а аммофос, диаммофос и сернокислый
калий хорошо растворимы и дают обильный осадок. Недостаток того или иного элемента минеральных удобрений приводит к нарушению обмена веществ в растениях. Например, светло-зеленая окраска и пожелтение листьев говорят о том, что растению не хватает азота; темный, почти черный цвет засыхающих листьев свидетельствует о недостатке фосфора; морщинистость листьев и закручивание их по краям – о недостатке калия и т. п. Однако следует иметь в виду, что внешние изменения растений могут происходить и под влиянием других причин: недостатка или избытка влаги, низкой температуры, поэтому при определении состояния овощной культуры по внешнему виду нужно учитывать все условия ее роста.
Второй химический элемент по величине объемной массы после кальция, содержащийся в стеблях и листьях золотого уса, – это
калий , преобладающий положительный ион внутри клеток, участвующий в высоком спектре биохимических реакций. Лабораторный анализ действия этого химического элемента установил, что калий выполняет определенные задачи:
Калий-40. Среди изотопов главное место по величине активности занимает изотоп
калия – 40К, который усваивается вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Количество калия в растениях, по сравнению с его содержанием в земной коре, меньше в 3—10 раз. В организме животных его еще меньше (в 10–15 раз по сравнению с содержанием калия в породах).
Иногда по ходу разговора нам будут встречаться и другие атомы, например сера (S), натрий (Na), хлор (Cl),
калий (K) или железо (Fe). Но постоянно помнить о них не надо. Пяти главных биогенных (то есть образующих жизнь) химических элементов для начала вполне достаточно.
Сохранение минерального состава тканей обеспечивается у человека благодаря потреблению минеральных веществ, средняя суточная потребность в которых является следующей (в милли-эквивалентах): натрия – 215,
калия – 75, кальция – 60, магния – 35, хлоридов – 215, фосфатов – 105, сульфатов – 90.
Чтобы возникла токсическая реакция, ядовитое вещество должно проникнуть к своей мишени. Иногда это рецептор, иногда – определенный белок или ядерная ДНК, но в целом можно сказать, что мишенью токсина является либо какое-то место внутри клетки, в пределах ее клеточной мембраны, либо сама эта мембрана (двойной липидный слой). Поэтому многие токсичные вещества, чтобы проявить свою активность, должны преодолеть мембраны, и как раз здесь на сцену выходит их растворимость. Водорастворимые вещества (и органические, и неорганические) не могут легко пройти сквозь липидные слои, если только не воспользуются белковыми каналами. Таким образом, транспорт водорастворимых веществ подвергается контролю, и содержание многих из них – например, таких неорганических ионов, как ионы натрия, хлорид, ионы
калия или кальция, – поддерживается в клетке на постоянном уровне.
Методом пламенной фотометрии выполнено исследование динамики изменения содержания каталитических ядов – натрия,
калия и кальция – на поверхности отработанного алюмооксидного катализатора в зависимости от места его расположения в реакторе.