Удивительная химия
И. А. Леенсон

Эта книга написана для всех, кто интересуется химией. Даже если вы еще не начали изучать ее в школе, вы поймете почти все, о чем здесь написано. Если же в химии вы не новичок, вы тоже найдете много интересного и нового для себя.

Оглавление

Из серии: О чем умолчали учебники

* * *

Приведённый ознакомительный фрагмент книги Удивительная химия предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

ИЗ ЧЕГО ВСЕ СОСТОИТ?

На этот с виду простой вопрос люди разных профессий ответят по-разному Про стол и стул многие скажут, что они сделаны из дерева (а может быть, пластмассы; бывают и металлические стулья, неспециалисты скажут про них — «железные»). Бутылка или стакан сделаны из стекла; дешевая ложка или кастрюля — из алюминия, ложка получше — из нержавеющей стали, а ложка из богатого старинного дома — из серебра; гвоздь или иголка — из железа. Из железа сделан и автомобиль (но, конечно, кроме железа, в нем есть и стекло, и пластмасса, и много разных других материалов). Все это совершенно правильно. Хотя химик может и уточнить, сказав, что стул сделан из древесины, которая состоит в основном из целлюлозы. О стуле из пластмассы он может сказать — из какой именно пластмассы. Такое же уточнение он может сделать и в отношении пластмассовой бутылки. Например, увидев в нижней ее части выдавленную латинскими буквами надпись РЕТ, он сразу поймет, что это — сокращенное международное обозначение пластмассы (полиэтилентерефталата).

Но даже специалисту не всегда легко так же просто сказать, из чего состоят, например, волосы или кожа человека, какое-нибудь лекарство или мазь в тюбике. Он может лишь сказать, что это сложная смесь — композит.

А теперь вопрос потруднее: из чего состоит дерево, стекло, пластмасса, алюминий, железо, а также множество других металлов, их сплавов и неметаллов? Мало кто из людей задумывался раньше над такими «ненужными» вопросами. Атак ли они не нужны? Ведь если знать, «из чего сделаны» разные металлы, то, может быть, удастся превратить свинец в золото? И не так уж важно, что свинец темный, тусклый, легко плавится, а если его нагреть посильнее, он и вовсе превратится в «окалину» желтого цвета — в свинцовый глет или в красный свинцовый сурик (эти вещества издавна использовали для приготовления глазурей и красок). А вот золото — желтое, блестящее, расплавить его намного труднее, оно никогда не «портится», не превращается при нагревании в окалину, не растворяется в кислотах. Недаром алхимики (так называли средневековых химиков) считали золото «царем металлов». Они были потрясены, когда обнаружили «адскую смесь» из соляной и азотной кислот, которая оказалась способна растворить само золото! Эту смесь так и назвали — царская водка (рис. 1.1).

Рис. 1.1. Рисунок из алхимического трактата: лев, символизирующий царскую водку, пожирает солнце — символ золота

А главное — золото всегда было мерилом ценностей, обладание золотом означало обладание всем остальным. На небольшой кусочек золота, который даже ребенок спрячет в кулачке, можно было купить раба или целый воз хлеба. Свинец же был сравнительно дешев; его использовали даже для починки водопроводных труб, а иногда из свинца делали и сами трубы. Недаром по-английски водопроводчик — plumber (от латинского plumbum — свинец). Почему же золото надо «делать» именно из свинца?

Ну, это древним было понятно: ведь свинец, как и золото, — тяжелый металл. (На самом деле свинец заметно легче: если кубик золота размером 1 дм3 весит 19,3 кг, то такой же кубик свинца — «всего лишь» 11,3 кг; правда, дошкольник, пожалуй, не поднимет ни тот ни другой.)

Согласно иной «теории», золото надо было делать из ртути, которая тяжелее свинца: литр этой жидкости весит 13,6 кг.

Так что полное ведро со ртутью обычному человеку даже от пола не оторвать!

Однако несмотря на многовековые старания тысяч алхимиков (рис. 1.2), никому из них не удалось превратить свинец не то что в золото, но даже в очень похожее на свинец олово. И постепенно становилось все более очевидным, что превратить один металл в другой вообще невозможно. А почему?

Рис. 1.2. Лаборатория алхимика. Старинный рисунок

Чтобы превратить одно вещество в другое, например газ этилен в полимер, из которого делают полиэтиленовые пакеты и другие изделия, прежде всего надо знать, что общего у этих веществ, как они устроены. А потом уже думать о том, как их можно «перестроить». В такой перестройке и заключается сущность химических превращений. Тысячи и тысячи проведенных опытов убедили ученых в том, что превращения одних веществ в другие происходят не только в природе — их можно провести искусственно. Более того, можно получить искусственным путем такие вещества, которых в природе никогда не существовало. И таких веществ сейчас известно более 25 миллионов! Посмотрите на тот же прозрачный легкий пакет, который иногда неправильно называют «целлофановым», — он сделан на химическом заводе из замечательного водонепроницаемого вещества — полиэтилена; еще не так давно полиэтилен стоил дорого, и хозяйки, которые сейчас просто выбрасывают грязные пакеты, когда-то их стирали, а потом сушили на веревке, как белье. Люди старшего поколения помнят, как у станций метро стояли будки, где мастера, чьи руки были сплошь перепачканы пастой разных цветов, заправляли использованные стержни для шариковых ручек! Сегодня в это просто трудно поверить.

Но не все превращения оказались возможными. Например, никто не смог из угля сделать серу. Еще в XVIII веке ученые убедились в том, что существуют химические элементы — самые простые вещества, которые друг в друга не превращаются. А в XX веке, когда стало понятно, как устроены атомы, это убеждение получило теоретическое объяснение. Но прежде должно было возникнуть и оформиться само понятие химического элемента.

Первые теории строения мира

Первые теории о том, как устроены вещества, почему они такие разные и как могут превращаться друг в друга, появились более 2500 лет тому назад. В то время над этими вопросами размышляли философы; в переводе с греческого слово «философ» означает «любитель мудрости». Никаких опытов они не проводили, практическое применение знаний многих из них тоже мало интересовало. Главное для них было — как все происходит, и почему так, а не иначе. То есть они занимались тем же, чем занимаются современные физики и химики-теоретики. При этом древние философы считали, что до всего человек может дойти собственным умом, путем строгих логических рассуждений. И на этом пути они достигли удивительных, выдающихся результатов!

С древних времен одним из главных вопросов, занимающих философов, был вопрос: из чего все состоит? Первым на него попытался ответить греческий философ Фале́с (640–550 до н. э.). Он полагал, что, поскольку одни вещества могут превращаться в другие, все они «сделаны» из одного и того же «первичного вещества» и являются только его разновидностями. Таким веществом Фалес считал воду, причем, конечно, не воду в реке, а воду как некую идеальную субстанцию, которая является «прародительницей» всего остального. Действительно, всякий знает, что чистая вода не имеет ни формы, ни цвета, ни запаха. Более того, она легко переходит из одного состояния в другое — замерзает в лед или превращается в пар. Много тысячелетий назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, весьма напоминающие чистый лед. Древние натуралисты так их и назвали — «кристаллос»; это слово происходит от греческого «криос» — «лед». Полагали, что лед, образующийся в горах, на сильном морозе, становится твердым как камень и теряет способность таять при нагревании. Один из самых авторитетных античных философов Аристотель (384–322 до н. э.) писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту». Римский поэт Клавдиан в 390 году уже новой эры то же самое описал красивыми стихами:

Ярой альпийской зимой лед превращается в камень.

Солнце не в силах затем камень такой растопить.

(Пер. М. Ильинского)

Любопытно, что такой же ход рассуждений был и у мудрецов древнего Китая и Японии — лед и горный хрусталь обозначали там одним и тем же словом. Интересно, как в разных странах и в разное время людям приходят в голову одни и те же идеи! Со временем, конечно, стало ясно, что горный хрусталь и лед — различные вещества. Однако оба термина сохранились: «кристалл» — в физике, химии, минералогии, «хрусталь» — в стекольном деле, где хрусталем называют особое стекло, например, с добавками соединений свинца.

Если вода может застыть в красивый твердый минерал, а также превратиться в пар, то почему она не может превратиться и во все остальное? Идея о воде как «первичном элементе» помогала объяснять единство вечно существующей материи: «Ничто не возникает из ничего, и ничто не исчезает, — писал греческий философ Анаксагор (ок. 500–428 до н. э.), — происходит только перераспределение тех вещей, которые существовали прежде». Это была очень глубокая и, по существу, правильная идея.

Конечно, древние не знали, да и не могли знать, что же представляют собой эти первоначала. Не все соглашались с Фалесом. Были философы, считавшие, что первооснова всех вещей — воздух, который, сгущаясь, превращается в воду и землю, а из них возникает все остальное. Другие полагали, что первоэлементом является огонь — ведь он так переменчив, так непостоянен. Но почему должно быть только одно «первоначало», только один первичный элемент, из которого все и построено? Почему все «детали мирового конструктора» должны быть одинаковыми? Скорее всего, их больше — но сколько?

Сейчас известно, что в природе существует около 90 различных «первоначал» — атомов. Но если бы об этом сказали грекам, они бы, скорее всего, возмутились: «Зачем в “конструкторе” так много лишних деталей! Достаточно всего нескольких!» Между тем мир очень сложен, он заключает в себе огромное множество различных веществ. Можно ли свести сложное к простому? Можно ли, исходя из нескольких «первоначал», построить все разнообразие веществ со всеми их свойствами? Это был ключевой вопрос науки. Сейчас ребенок, у кого есть хороший конструктор, скажет: «Да, можно — если в конструкторе есть детали нескольких сортов и этих деталей очень много, то из них можно построить все, что угодно!»

Многие философы, и среди них Эмпедокл (ок. 400 — ок. 430 дон. э.) и Аристотель, считали, что «первичных начал» всего четыре — это «земля», «вода», «воздух» и «огонь». Эти слова взяты в кавычки, потому что «вода» у Аристотеля — это не знакомая всем жидкость, а, как у Фалеса, лишь носитель определенных качеств: влажности и холода. Чем больше в каком-нибудь теле «воды», тем оно холоднее и более влажное. Соединение элементов с противоположными свойствами невозможно: теплота не может соединиться с холодом, а влага с сухостью. По Аристотелю, свойства элементов комбинируются попарно (рис. 1.3): вода влажная и холодная, огонь сухой и горячий, воздух теплый и влажный, земля холодная и сухая.

Рис. 1.3. Элементы Аристотеля в сочетании с разными «качествами»

К этим четырем «земным элементам» Аристотель присоединил нематериальный, «эфирный» элемент, который проникает во все вещи — quinta essentia, т. е. «пятая сущность»; вот откуда возник термин «квинтэссенция», который означает самое главное, важное, наиболее существенное.

Можно ли из четырех «первичных начал» и «эфира» построить все остальные тела? Аристотель и его последователи считали, что можно, если четыре «первичных начала» с помощью «пятой сущности» способны превращаться друг в друга. Так, вода может превращаться в воздух и землю, потому что их общим свойством является влажность. Таким образом появилась «химическая теория», показывающая, как одни вещества могут превращаться в другие.

Великий греческий философ Платон (ок. 428 — ок. 348 до н. э.) сделал очень интересную вещь: он уподобил каждое «первоначало» правильному выпуклому многограннику. Таких многогранников существует всего пять, и их часто называют «Платоновыми телами» (рис. 1.4). Напомним, что правильным называется выпуклый многогранник, построенный из одинаковых правильных многоугольников. Например, из четырех равносторонних треугольников можно сделать тетраэдр — многогранник с четырьмя вершинами, четырьмя гранями и шестью ребрами, т. е. фигуру в форме пакета, в котором когда-то продавали молоко. Кстати, «тетра» по-гречески означает «четыре», а «эдра» — «поверхность, сторона». Из шести квадратов легко получается второе платоново тело — куб. Из восьми равносторонних треугольников состоит октаэдр, в переводе с греческого — «восьмигранник» (представьте себе две египетские пирамиды, сложенные вместе своими основаниями, — это и будет октаэдр). Из двенадцати правильных пятиугольников получается двенадцатигранник — додекаэдр. Икосаэдр («эйкос» по-гречески «двадцать») состоит из двадцати равносторонних треугольников. Других правильных многогранников не существует. Попробуйте склеить все эти фигурки из бумаги. Кстати, это не просто забава. Именно такой «детской игрой» занимались ученые, открывшие новый тип молекул, построенных из атомов углерода; они назвали их фуллеренами — по имени современного архитектора Роберта Бакминстера Фуллера, который строил купола из многогранников. За это открытие они в 1996 году получили высшую научную награду — Нобелевскую премию по химии. Самая симметричная и красивая молекула — бакминстерфуллерен — имеет 60 вершин и состоит из 20 шестиугольников и 12 пятиугольников. Конечно, эта фигура не является правильной (ведь в ней есть и пяти-, и шестиугольники), зато она выглядит точно так же, как современный футбольный мяч!

Рис. 1.4. Пять правильных многогранников — платоновых тел: 1 — тетраэдр; 2 — октаэдр; 3 — икосаэдр; 4 — куб; 5 — додекаэдр

Самое интересное, что Платон, пораженный совпадением количества правильных многогранников с числом «сущностей» природы, посчитал это равенство отнюдь не случайным. И он пришел к заключению, что огонь построен из «колючих» тетраэдров, воздух — из более «округлых» октаэдров, вода — из еще более «круглых» икосаэдров, а земля — из кубов, которые могут плотно прилегать друг к другу. Оставался еще додекаэдр, и Платон решил, что такую красивую и совершенную форму имеет весь мир — Вселенная!

Далеко не все философы соглашались с таким представлением об устройстве мира. Так, Демокрит (ок. 460 — ок. 370 до н. э.) считал, что все тела состоят из множества мельчайших частичек, названных им атомами (в переводе — «неделимые»). Логично было предположить, что существуют различные «сорта» атомов с разными размерами и формой. Они могут сцепляться друг с другом, например, с помощью крючочков или как-нибудь иначе. Скомбинировав атомы разными способами, как детали в конструкторе, можно получать разные вещества, а также превращать одни вещества в другие. Считали, например, что золото и серебро «растут» под землей, когда атомы группируются в нужном порядке. Поэтому не удивительными кажутся попытки, предпринимавшиеся в течение многих веков, превратить неблагородные металлы в благородные.

Учение о том, что все вещества состоят из мельчайших частиц, получило название атомистической теории. Эта теория — одно из наиболее важных, фундаментальных понятий в науке. Догадки древних, основанные лишь на размышлении, в принципе не так уж далеки от современных представлений: существует ограниченное число различных типов атомов (т. е. элементов), которые могут по-разному соединяться друг с другом, давая огромное разнообразие веществ с разными свойствами. А процесс перестройки взаимного расположения атомов составляет сущность химической реакции. Атомистическая теория была величайшим достижением человеческого разума. Очень образно о ней сказал лауреат Нобелевской премии по физике Ричард Фейнман (1918–1988): «Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза (можно называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе… содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».

Никаких реальных «доказательств» существования атомов у древних, конечно, не было и быть не могло — только рассуждения. Например такие: что будет, если, допустим, яблоко разрезать пополам? Сейчас ответ очевиден даже малому ребенку: получатся две половины яблока. А если каждую половину снова разрезать пополам? Получатся четвертинки. Потом — восьмушки, потом — шестнадцатые доли… Через некоторое время, скажете вы, придется взять увеличительное стекло и лезвие бритвы, потом — микроскоп и специальные инструменты. А потом?

Те из вас, кто учился музыке, возможно, вспомнят основу музыкальной грамоты: целая по длительности нота делится на половинки, последние — на четверти, потом идут восьмые доли, шестнадцатые, тридцать вторые, очень редко — шестьдесят четвертые… Меньшими долями композиторы обычно не пользуются, так как их уже трудно «втиснуть» в нужный отрезок времени. О связи музыки и химии мы еще поговорим, а пока подумаем над таким вопросом: можно ли (хотя бы теоретически) создавать все более и более короткие звуки? И есть ли у этого процесса предел? Вопрос этот на самом деле очень непрост, и ответ на него также не очевиден, как и в случае с яблоком: возможно ли до бесконечности делить его на все более и более мелкие части, или когда-то наступит предел? Древнегреческий философ Левкипп (ок. 500–440 до н. э.) был, возможно, первым человеком на Земле, который две с половиной тысячи лет назад понял (рассуждая чисто логически), что процесс «разрезания яблока» должен рано или поздно прекратиться. Это произойдет тогда, когда мы дойдем до мельчайших частичек, из которых состоят не только яблоки, но и все остальные тела. Эти частички ученик Левкиппа — Демокрит назвал атомами. Демокрит считал, что существуют различные «сорта» атомов с разными размерами и формой. Именно этим объясняются различия в свойствах разных тел.

Атомистический взгляд на мир очень образно и поэтично изложил древнеримский поэт и философ Тит Лукреций Кар (ок. 99–55 до н. э.), которого обычно называют просто Лукрецием. В своей поэме «О природе вещей» он ни разу не употребил слова «атом», хотя и был знаком с этим понятием. Вместо него он использовал более десятка синонимов: «начала», «первоначала», «семена вещей» и др. Некоторые из них («корпускула», «элемент») позднее стали научными терминами. Атомистическое учение Лукреция во многом совпадает с современными представлениями. И если бы последние два тысячелетия его поэму изучали во всех существовавших тогда учебных заведениях, история человечества могла пойти по совершенно иному пути.

Теперь самое время ознакомиться с некоторыми строчками замечательной поэмы Лукреция.

Прежде всего Лукреций предупреждает читателя, что «начала» так малы, что увидеть их нет никакой возможности. Однако размышления над природными процессами убеждают нас в том, что они все же существуют, а не являются плодом фантазии. Вот, почитайте выдержки из его поэмы в переводе Ф. А. Петровского:

…Начала вещей недоступны для глаза…

Существуют тела, которых мы видеть не можем.

Запахи мы обоняем различного рода,

Хоть и не видим совсем, как в ноздри они проникают.

И, наконец, на морском берегу, разбивающем волны,

Платье сырее всегда, а на солнце вися, оно сохнет;

Видеть, однако, нельзя, как влага на нем оседает,

Да и не видно того, как она исчезает от зноя.

Значит, дробится вода на такие мельчайшие части,

Что недоступны они совершенно для нашего глаза.

Так и кольцо изнутри, что долгое время на пальце

Носится, из году в год становится тоньше и тоньше;

Нам очевидно, что вещь от стиранья становится меньше,

Но отделение тел, из нее каждый миг уходящих,

Нашим глазам усмотреть запретила природа ревниво.

Чем не современное объяснение атомной теории строения вещества? Лукреций уверен, что атомы, в отличие от видимых тел, не стареют, не разрушаются, а существуют в неизменном виде вечно и только переходят из одних тел в другие. При этом общее число атомов в мире постоянно:

…Существуют такие тела, что и плотны, и вечны:

Это — вещей семена и начала в учении нашем,

То, из чего получился весь мир, существующий ныне…

Первоначалам должно быть присуще бессмертное тело,

Чтобы все вещи могли при кончине на них разлагаться.

Пне иссяк бы запас вещества…

Первоначала вещей, таким образом, просты и плотны.

Иначе ведь не могли бы они, сохраняясь веками,

От бесконечных времен и досель восстанавливать вещи.

А вот как Лукреций объясняет, каким образом из одних и тех же атомов могут получаться разные вещи: он проводит аналогию между порядком сочетания атомов, соединяющихся друг с другом, и букв, образующих множество разных слов:

Часто имеет еще большое значенье, с какими

И в положеньи каком войдут в сочетание те же

Первоначала и как они двигаться будут взаимно.

Те же начала собой образуют ведь небо и землю,

Солнце, потоки, моря, деревья, плоды и животных…

Даже и в наших стихах постоянно, как можешь заметить,

Множество слов состоит из множества букв однородных,

Но и стихи, и слова, как ты непременно признаешь,

Разнятся между собой и по смыслу и также по звуку.

Видишь, как буквы сильны лишь одним измененьем порядка.

Что же до первоначал, то они еще больше имеют

Средств для того, чтоб из них возникали различные вещи.

Лукреций уверен, что многообразие тел можно объяснить не только различным способом соединения атомов между собой, но и тем, что сами атомы отличаются друг от друга. Действительно, интересно ли играть с конструктором, в котором все детали одинаковы? (На самом деле такие «конструкторы» существуют — это кубики, но ведь это игра для самых маленьких.)

Что же до первоначал, то они еще больше имеют

Средств для того, чтоб из них возникали различные вещи,

Нет ни одной из вещей, доступных для нашего взора,

Чтоб она из начал состояла вполне однородных;

Нет ничего, что различных семян не являлось бы смесью.

Поразительно, но Лукреций предполагал, по-видимому, делимость атомов! Во всяком случае, именно так можно понимать следующие строчки из его поэмы:

Предположи, например, что тела изначальные будут

Три или несколько больше частей заключать наименьших;

Если затем ты начнешь эти части у данного тела

Переставлять или снизу наверх, или слева направо,

То обнаружишь тогда, сочетания все их исчерпав,

Все изменения форм, что для этого тела возможны;

Если ж иные еще получить ты желаешь фигуры, —

Части другие тебе прибавить придется.

А вот еще один довод Лукреция в пользу существования мельчайших частиц материи, находящихся в постоянном движении:

Вот посмотри: всякий раз, когда солнечный свет проникает

В наши жилища и мрак прорезает своими лучами,

Множество маленьких тел в пустоте, ты увидишь, мелькая,

Мечутся взад и вперед в лучистом сиянии света.

Знай же: идет от начал всеобщее это блужданье.

Первоначала вещей сначала движутся сами,

Следом за ними тела из мельчайшего их сочетанья,

Близкие, как бы сказать, по силам к началам первичным,

Скрыто от них получая толчки, начинают стремиться

Сами к движенью, затем побуждая тела покрупнее.

Так, исходя от начал, движение мало-помалу

Наших касается чувств и становится видимым также

Нам и в пылинках оно, что движутся в солнечном свете,

Хоть незаметны толчки, от которых оно происходит…

Первоначала вещей уносятся собственным весом

Или толчками других.

Современная наука не подтвердила этот вывод древнего философа: пылинки в луче солнца слишком велики, чтобы молекулы воздуха могли на них действовать, и «пляшут» они под влиянием потоков воздуха. Но, наблюдая значительно более мелкие пылинки под микроскопом, можно увидеть их «пляску», действительно вызванную ударами молекул. Так что в принципе Лукреций правильно описал явление, открытое английским ботаником Робертом Броуном (1773–1858) в 1827 году и теоретически объясненное только в XX веке, в том числе в работе знаменитого физика Альберта Эйнштейна (1879–1955).

Теоретические построения древнегреческих философов были первыми научными построениями. На их основе через много веков зародились современные науки, в числе которых была и химия. Без древней атомистической теории не только химия, но и все естественные науки не могли бы развиваться. Однако на протяжении еще многих столетий лишь малая часть философов и ученых разделяла гипотезу о существовании атомов. Ну а все, что касалось размеров атомов, их массы, формы и т. п., оставалось тайной за семью печатями, и не было даже надежды, что эту тайну удастся раскрыть.

Что такое элемент

Лукреций, написавший свою поэму на латинском языке, часто использовал слово principium, которое означает «основа, первоначало». Есть в латинском языке и другое близкое понятие: elementum. Оно означает «вещество, стихия», а во множественном числе (elementa) — «основания, основные начала». В древности было распространено изречение: «Как слова состоят из букв, так и тела — из элементов». Любопытно, что по одной из версий слово elementum происходит от названия следующих по алфавиту латинских согласных: l, m, n el» — «em» — «en») и окончания t («tum»).

Современное понятие «элемент» появилось в XVII веке. Английский ученый Роберт Бойль (1627–1691) определял элементы не умозрительно, как древние, а чисто практически. Рассуждал он примерно так: «Если вещества невозможно разложить на более простые, значит они являются элементами и состоят из атомов только одного сорта. (Сейчас такие вещества называют простыми.) Если же вещества разлагаются под действием кислот или при сильном нагреве, значит эти вещества состоят из разных элементов и являются сложными веществами».

В те времена считать какое-либо вещество элементом можно было только условно; ведь никто не сомневался в том, что со временем химики сумеют разложить на составные части некоторые из тех веществ, которые признавались простыми. Вот что писал по этому поводу французский химик Антуан Лоран Лавуазье (1743–1794) в своем учебнике «Элементарный курс химии», изданном в 1789 году: «Все вещества, которые мы еще не смогли никаким способом разложить, являются для нас элементами; но не потому, что мы могли бы утверждать, что эти тела, рассматриваемые нами как простые, не состоят из двух или большего числа начал, но… потому, что мы не имеем никаких средств их разделить, эти тела ведут себя, с нашей точки зрения, как простые, и мы не должны считать их сложными до тех пор, пока опыт или наблюдения не докажут нам этого».

Сам Бойль, например, полагал, что металлы не являются простыми веществами и потому возможны превращения одних металлов в другие. Такого же мнения придерживался и выдающийся английский физик Исаак Ньютон (1643–1727), потративший массу времени и здоровья на алхимические опыты.

Со временем химики достигли больших успехов в изучении различных превращений. Но у них еще не было достаточно надежных методов, которые бы позволяли различать простые и сложные вещества. Отсюда возникали ошибки даже у известных ученых. Сам Лавуазье в своем учебнике привел таблицу примерно из 30 простых тел. Среди них были действительно простые вещества (газы — кислород, азот, водород; металлы — серебро, золото, медь, олово, железо, ртуть, никель, марганец и др.; неметаллы — сера, фосфор, углерод, хлор). А были и сложные вещества, о чем тогда еще не было известно (например: известь, глинозем, кремнезем). Воду, например, долго считали элементом, пока Лавуазье не опроверг это мнение и не написал в 1783 году сочинение, которое он назвал «Статья, имеющая целью доказать, что вода не простое вещество, не элемент в собственном смысле слова, но что она может быть разложена и получена вновь». Оказалось, что вода образуется при горении многих веществ, например водорода. А с помощью раскаленного железа воду можно снова разложить на водород и кислород (Лавуазье пропускал для этого пары воды через раскаленный ружейный ствол).

Основу современной атомистики заложил английский ученый Джон Дальтон (1766–1844). Свою теорию он вывел исходя из сделанного им открытия. Оказалось, что многие элементы могут соединяться друг с другом в разных соотношениях, при этом образуются разные вещества. А самое главное — в этих веществах массы элементов кратны друг другу и соотносятся как небольшие числа. Например, углерод может соединяться с кислородом в массовых соотношениях 3:4 или 3:8 (при этом образуется либо угарный газ, либо углекислый); сера соединяется с кислородом в соотношении 1:1 или 2:3, азот с кислородом — в соотношении 7:4, 7:8, 7:12, 7:16 и 7:20 (правда, Дальтону были известны не все эти соединения). Платон, наверное, долго ломал бы голову, соображая, как эти странные соотношения можно подогнать к его теории строения мира. Дальтон же рассудил просто. Существуют атомы углерода, кислорода, серы, азота, причем атомы каждого элемента имеют свою массу. В разных веществах атомы соединяются друг с другом в строго определенных соотношениях. Например, если один атом азота «весит» 7 условных единиц, а один атом кислорода — 8 таких же единиц, то соотношение атомов в разных оксидах азота (так называются соединения азота с кислородом) будет: 2:1, 1:1, 2:3, 1:2 и 2:5.

Рассуждая таким образом и основываясь на экспериментах, Дальтон составил первую таблицу атомных масс. Атомы разных элементов он обозначил разными фигурками, запомнить которые было довольно трудно. Позднее шведский химик Йенс Якоб Берцелиус (1779–1848) предложил очень простой способ для обозначений атомов — по первой букве названий элементов на латинском языке. Если же буквы у разных названий оказывались одинаковыми, тогда он добавлял вторую букву. Например, водород на латыни — Hydrogenium (в переводе — «рождающий воду»), знак элемента Н; углерод — Carboneum, знак С; кислород — Oxygenium («рождающий кислоты»), знак О; азот — Nitrogenium («рождающий селитру»), знак N и т. д. Теперь различные оксиды азота можно было записать совсем просто: N2O, NO, N2O3, NO2 и N2O5. На таком «языке» говорят сегодня все химики мира; написав формулы, китайский химик легко поймет норвежского, хотя норвежец может не знать ни одного слова по-китайски, и наоборот.

Помимо аргументов, основанных на представлениях о кратных соотношениях, в пользу атомистического учения приводились и другие доводы. Например, существование красивых кристаллов разной формы — простой (как у поваренной соли, кристаллы которой образуют кубики) или сложной (рис. 1.5) — можно было объяснить тем, что они построены из атомов, которые соединены друг с другом в пространстве по определенным правилам.

Рис. 1.5. Кристаллы разной формы: 1 — каменная соль; 2 — гранат; 3 — алмаз; 4 — квасцы; 5 — берилл; 6 — турмалин; 7 — «правая» форма кварца; 8 — «левая» форма кварца; 9 — медный купорос

Дальтон, чтобы его теория была понятной и наглядной, демонстрировал на своих лекциях разноцветные кубики, которые символизировали атомы разных элементов. Из этих кубиков, подбирая их в нужном количестве, он составлял различные химические соединения. Не все слушатели хорошо понимали суть его теории. Когда одного из студентов спросили, что такое атомы, он ответил: «Атомы — это разноцветные деревянные кубики, которые мистер Дальтон показывает на лекциях…»

Массы атомов Дальтон выражал в относительных единицах — ведь он не мог взвесить отдельный атом, который так мал, что не виден даже в микроскоп! Можно было бы взвесить кусочек вещества побольше, но тогда для определения массы одного атома надо было точно знать, сколько атомов в этом кусочке. Во времена Дальтона этого не знали. Позднее химики и физики определили, сколько атомов содержится, например, в одном миллиграмме золота — едва заметной маленькой крупинке. Оказалось — астрономическое число: 3·1018 (т. е. 3, умноженное на 10 с восемнадцатью нулями)! Сумели построить и приборы, которые позволили разглядеть отдельные атомы (рис. 1.6). Теперь уже никто не вправе усомниться в том, что атомы существуют на самом деле! Правда, значение греческого слова «атомос» уже не соответствует современным представлениям об атоме как о неделимой частице: атомы состоят из более мелких «деталей» — протонов, нейтронов и электронов, а есть и еще более «элементарные» — кварки. Но этот «конструктор» уже не для химиков — им пользуются физики для «конструирования» казавшихся ранее элементарными частиц — протонов и нейтронов.

Рис. 1.6. На этой не очень четкой фотографии, сделанной с помощью электронного микроскопа, видны выстроившиеся в ряды атомы элемента ниобия

В силу того, что никакие химические реакции не способны изменить ядро атома, невозможно химическими методами превратить один атом в другой. Вот почему не переходят друг в друга и химические элементы. Это как в конструкторе: если в нем очень много разных деталей, то из них можно собрать множество сложных конструкций. Но невозможно одну деталь превратить в другую, например кубик — в уголок. Поэтому сейчас только чудаку или совершенно дремучему человеку может прийти в голову идея превратить одно простое вещество в другое (например, свинец в золото, как это пытались в течение сотен лет сделать алхимики). И как мастер может распилить детали и из их частей склеить, спаять или сварить детали другой формы, так и физики сейчас умеют из одних атомов получать другие, правда, не любые. Золото из свинца они вряд ли получат, а вот из ртути, пожалуй, смогут (у ртути заряд ядра атома всего лишь на единицу больше, чем у золота). Однако осуществлять такие чудесные превращения они могут, как правило, лишь с небольшим числом атомов. Так что один грамм «искусственного» золота будет стоить, вероятно, больше, чем тысячи тонн «обычного» золота. Именно по этой причине теперь ни у кого не возникает желания обогатиться, превратив неблагородный металл в золото…

Большинство окружающих нас веществ являются сложными веществами, построенными из нескольких элементов. Например, вода состоит из атомов водорода и кислорода, поваренная соль — из атомов натрия и хлора, сахар — из атомов углерода, водорода и кислорода (поэтому сахар относят к углеводам), витамин В12 — из атомов углерода, водорода, кислорода, азота, фосфора и кобальта и т. д.

На практике понятие простого вещества, как и многие другие химические понятия, носит условный характер. (Все же химия — не математика!) Ведь «железный» гвоздь сделан вовсе не из чистого железа, а из низкоуглеродистой стали, содержащей небольшое количество углерода. Чистое железо очень мягкое и почти никогда не используется. То же можно сказать про свинцовую оболочку кабеля, серебряную вилку, алюминиевую ложку — все они представляют собой сплавы разных металлов, хотя свинца, серебра и алюминия в них больше всего. Например, «серебряные» полтинники, которые были отчеканены в нашей стране в 1921–1927 годах в количестве почти 150 миллионов, и потому их сохранилось довольно много, содержат только 90 % серебра, остальное — медь.

Вообще число относительно чистых простых веществ, с которыми человек сталкивается в повседневной жизни, невелико. Из металлов это, прежде всего, медь и алюминий, из которых сделаны электрические провода (примеси снижают электропроводность). Раскаленный волосок электрической лампочки — практически чистый, очень тугоплавкий металл вольфрам, а тоненькие подвески с крючками на концах, которые одним концом впаяны в стекло, а другим поддерживают вольфрамовую нить, сделаны из тугоплавкого металла молибдена. Тонкий защитный слой на консервной банке — практически чистое олово, а красивые крупные кристаллы на стенках и дне нового «железного» ведра — это цинк. В некоторых магазинах можно увидеть очень дорогие юбилейные монеты из платины, палладия, золота, сделанные из металлов высокой чистоты (степень чистоты на них, как правило, указана и может достигать 99,9 %). В медицинских градусниках используют единственный жидкий при 20 °C металл — ртуть. Многие металлические изделия покрывают хромом или никелем, которые придают предметам привлекательный блеск. Вот, пожалуй, и все чистые металлы, встречающиеся в быту. Остальные — это сплавы, которых огромное множество: латунь, бронза, томпак, баббит, мельхиор, нейзильбер, дуралюминий, силумин, инвар, платинит, нихром, константан — всех не перечислить…

Из неметаллов в быту в чистом виде встречается сера (ее используют для борьбы с вредителями растений), углерод (например, в виде сажи), гелий (им наполнены «летучие» воздушные шарики, а раньше для этого использовали более дешевый, но горючий водород), криптон (в электрических «криптоновых» лампочках, отличающихся при той же мощности меньшим размером и грибовидной формой). Конечно, если покопаться в микросхеме компьютера или телевизора, возможно, найдутся маленькие кристаллы чистого кремния и германия.

Конец ознакомительного фрагмента.

Оглавление

Из серии: О чем умолчали учебники

* * *

Приведённый ознакомительный фрагмент книги Удивительная химия предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я