Самое лучшее описание физической природы за всю историю существования цивилизаций. Основывается всего на двух постулатах, установленных экспериментально и никем не оспариваемых: 1. Все частицы вращаются. 2. Между частицами нет пустоты. Из этого следуют абсолютно все физические явления и наблюдаемые результаты физических экспериментов в квантовой и любой другой области физики. Предназначение книги — осуществить всеобъемлющее понимание физики и стать настольной книгой каждого учëного на Земле.
Приведённый ознакомительный фрагмент книги «Идеи по атомной механике. Открытие физической основы для теории всего» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
VII. Интерференция, дифракция волн, опыт Юнга (опыт со щелями перед экраном)
В этом небольшом фильме https://youtu.be/3fHRTyjPGIQ?si=QaICTyvDJBtFV5AE честно обозначается проблема, о которой я хорошо помню: «электромагнитные волны» ведут себя подобно волнам, хоть и запускаются как частицы, но интерферируют перед экраном как волны, а при попытке понять этот парадокс они словно издеваются: усмиряются и снова становятся частицами. Особенно интересен опыт с одним электроном (с одним зарядом), его-то мы и разберём.
Хороший фильм об опыте Юнга
Итак, при запуске электрона вылетает не шарик, а запускается вращение, за которым тут же выстраивается ионная нить зарядов. До этого, чтобы не усложнять, я представлял себе ионные нити в виде тонких прямых линий, но глядя на эксперимент, да и вообще глядя на то, как рассеивается любой луч света, даже сконцентрированный параболическим отражателем (рефлектором), мне придётся немного расширить своë представление: конечно же, ничто не мешает ионным нитям рассеиваться, то есть разделяться, разветвляться в пространстве на множество ионных нитей, особенно если они сформированы на низкой частоте, как радиоволны, из одной точки пространства они могут распространяться во все стороны одновременно и в результате ослабевать, по мере удаления от источника излучения.
А при столкновении с препятствием, ионные нити отражаются от него. Угол падения (светового луча на зеркало) равен углу отражения. Именно равенство углов (падения и отражения) говорит о том, что ионные нити представляют собой тонкие прямые линии. Не волны. Но если препятствие мелкое, например пылинка в воздухе или щербоватый край щели, как в эксперименте, то углов отражения получается несколько и все они направлены в разные стороны, как проекции луча. Именно из-за этого рассеяния луча происходит дифракция и интерференция образовавшихся лучей друг с другом, то есть повторное пересечение этих лучей и образование нескольких линий света на экране вместо ожидаемых двух. В фильме ведь правильно отмечено: исследователи думали, что частицы как-то соударяются друг с другом, и чтобы исключить эти соударения, решили использовать в опыте «один электрон».
Но один-то никак не получится, поскольку заряд (называемый у них «электроном») неизбежно ионизирует ряд частиц за собой. Он не выстреливается куда-то и не летит как шарик, в опыте Юнга ускорителем создаётся точечная вихревая закрутка, которая увлекает ряд частиц за собой и образуется ионная нить вращения.
Именно потому, что зарядам не надо никуда лететь, им достаточно развернуться на месте, соединиться друг с другом полюсами вращения (подобно маленьким магнитикам), ионная нить вращения образуется быстрее, чем любое передвижение вещества — со скоростью света. Если бы «электрон» летел со скоростью света как частица — он бы встречал на своëм пути гигантское сопротивление со стороны других частиц и быстро замедлялся бы, но никакого сопротивления и наблюдаемого замедления скорости «электрона» не происходит, даже в металле, в проводнике, так называемый электрон не испытывает сопротивления. Подумайте: многократное увеличение плотности среды, в которой якобы движется «электрон», не оказывает абсолютно никакого влияния на скорость «электрона». Этот факт говорит о том, что «электрон» никуда не движется, он стоит на месте и передаёт вращение, как заряд, соседним частицам, а те передают следующим, по цепочке. И на пути передачи вращения могут быть некоторые препятствия, которые рассеивают луч вращения в разные стороны, то есть помехи, приводящие к рассеиванию луча.
Интерференционная картина, которая получается на экране, как мы видим, не ровная, в отличии от интерференционной картины, созданной настоящими волнами, бегущими по воде. Если шербинистые края интерференционных щелей шлифануть или сделать их идеально гладкими, то интерференционная картина сильно изменится. При определëнных условиях она может даже исчезнуть. Именно это и происходит в эксперименте, когда они пытаются «поймать электрон», чтобы понять, через какую же щель он якобы пролетает, интерференционная картина полностью исчезает. Точнее, она выглядит так, как если бы через две щели пролетели «шарики».
Почему исчезает интерференционная картина? Чтобы «поймать электрон», чтобы зарегистрировать его якобы пролёт через щель, нужно создать на выходе из щели электромагнитную ловушку, то есть заряд с положительным вращением — электрон с отрицательным вращением буквально ввинтится в него и своей энергией передаст детектору сигнал: «я здесь!» Конечно же, это сделает не движущаяся частица, а ионная нить, образуемая вслед за первым зарядом. А поскольку за одной из щелей стоит детектор, втягивающий в себя ионные нити как магнит (другого способа регистрации «электронов» просто не существует, это же электронный микроскоп в том или ином виде), интерференционная картина пересечения рассеянных лучей неизбежно должна исчезать в таком случае, и никакая магия с мнением экспериментатора здесь ни при чëм, равно как и другая мистика — всё это плод воображения.
Поменяйте условия эксперимента, если хотите — и вы поймёте, что на «электрон» оказывает влияние не ваше наблюдение, а ваш способ регистрации.
…
Приведённый ознакомительный фрагмент книги «Идеи по атомной механике. Открытие физической основы для теории всего» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других