Понятия со словосочетанием «математическая структура»
Математи́ческая структу́ра — название, объединяющее понятия, общей чертой которых является их применимость к множествам, природа которых не определена. Для определения самой структуры задают отношения, в которых находятся элементы этих множеств. Затем постулируют, что данные отношения удовлетворяют неким условиям, которые являются аксиомами рассматриваемой структуры.
Связанные понятия
Теория вычислимости, также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Метод обобщений (математика) — метод математического творчества, в котором в процессе формирования математического понятия более широкого объёма отбрасываются все второстепенные данные и акцентируется внимание на основных фактах. Этот метод...
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Геометрическое квантование — метод квантования классических теорий и моделей физических систем, при котором построение квантовых аналогов происходит исходя из геометрии пространств состояний (фазовых пространств) соответствующих классических объектов. Геометрическое квантование возникло из стремления распространить методы квантования простых механических систем на более общие системы и фазовые пространства, а также достижения в теории унитарных представлений. В основе геометрического квантования...
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Конформная теория поля это квантовая теория поля, которая является инвариантной относительно конформных преобразований. При размерности пространства равном двум может быть решена в точности.
Реляционное исчисление — прикладная ветвь формальной теории, носящей название «исчисления предикатов первого порядка». В основе исчисления лежит понятие переменной с определенной для неё областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. Наряду с реляционной алгеброй является способом получения результирующего отношения в реляционной модели данных. В зависимости от того, что является областью определения переменной, различают...
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Симме́три́я в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого).
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Инвариа́нт — это свойство некоторого класса (множества) математических объектов, остающееся неизменным при преобразованиях определённого типа.
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
Подробнее: Пространство (математика)
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Незави́симость систе́мы аксио́м ― свойство системы аксиом данной аксиоматической теории, состоящее в том, что каждая аксиома является независимой, то есть не является логическим следствием из множества остальных аксиом этой теории. Система аксиом, обладающая этим свойством, называется независимой.
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Многообразие Эйнштейна — риманово или псевдориманово многообразие, тензор Риччи которого пропорционален метрическому тензору.
Теория представлений — раздел математики, изучающий абстрактные алгебраические структуры с помощью представления их элементов в виде линейных преобразований векторных пространств. В сущности, представление делает абстрактные алгебраические объекты более конкретными, описывая их элементы матрицами, а операции сложения и умножения этих объектов — сложением и умножением матриц. Среди объектов, поддающихся такому описанию, находятся группы, ассоциативные алгебры и алгебры Ли. Наиболее известной (и, исторически...
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Топологическая семантика является естественной семантикой для неклассических логик, таких как интуиционистская логика и модальная логика. Исторически топологическая семантика появилась раньше более распространенной на данной момент семантики Крипке. Основы топологической семантики были заложены в работах Куратовского.
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Интуициони́стское исчисле́ние выска́зываний, называемое иногда Интуициони́стской ло́гикой — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930.
Метатеория — теория, анализирующая методы и свойства другой теории, так называемой предметной или объектной теории.
Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей.
В теории представлений групп Ли и алгебр Ли, фундаментальное представление — это неприводимое конечномерное представление полупростой группы Ли или алгебры Ли, старший вес которого является фундаментальным весом. Например, определяющий модуль классической группы Ли является фундаментальным представлением. Любое конечномерное неприводимое представление полупростой группы Ли или алгебры Ли полностью определяется своим старшим весом (теорема Картана) и может быть построено из фундаментальных представлений...
Подробнее: Фундаментальное представление
Парадокс Скулема — противоречивое рассуждение, описанное впервые норвежским математиком Туральфом Скулемом, связанное с использованием теоремы Лёвенгейма — Скулема для аксиоматической теории множеств.
Ма́тричная меха́ника — математический формализм квантовой механики, разработанный Вернером Гейзенбергом, Максом Борном и Паскуалем Иорданом в 1925 году.
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Арифметика Пресбургера — это теория первого порядка, описывающая натуральные числа со сложением, но в отличие от арифметики Пеано, исключающая высказывания относительно умножения. Названа в честь польского математика Мойжеша Пресбургера, который в 1929 году предложил соответствующую систему аксиом в логике первого порядка, а также показал её разрешимость.
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
Принцип двойственности в проективной геометрии — набор утверждений, устанавливающих соответствия между различными объектами в проективных пространствах (например, подпространствами различных размерностей) и их свойствами. Таким образом, если в проективной геометрии доказана теорема A, а утверждение B двойстенно к A, то B также доказано. Например, на проективной плоскости двойственными объектами являются «точка» и «прямая», а свойству «точка лежит на прямой» соответствует двойственное свойство «прямая...
Абелево многообразие — это проективное алгебраическое многообразие, являющееся алгебраической группой (это значит, что закон композиции задаётся регулярной функцией).
Скобка Мояля была введена в 1940 году Хосе Энрике Моялем, но ему удалось опубликовать свою работу только в 1949 году после долгих споров с Полем Дираком.. В то же время эта идея была независимо высказана в 1946 году Хипом Груневолдом в докторской диссертации.
Абсолютная геометрия — часть классической геометрии, независимая от пятого постулата евклидовой аксиоматики (то есть в абсолютной геометрии пятый постулат может выполняться, а может и не выполняться). Абсолютная геометрия содержит предложения, общие для евклидовой геометрии и для геометрии Лобачевского.