Понятия со словосочетанием «деление столбиком»
Деление столбиком (также известное как деление уголком) — стандартная процедура в арифметике, предназначенная для деления простых или сложных многозначных чисел за счёт разбивания деления на ряд более простых шагов. Как и во всех задачах на деление, одно число, называемое делимым, делится на другое, называемое делителем, производя результат, называемый частным. Этот способ позволяет выполнять деление произвольно больших чисел, разбивая процесс на серию последовательных простых шагов.В Европу этот...
Связанные понятия
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.
Одночлен (также моном) — простое математическое выражение, прежде всего рассматриваемое и используемое в элементарной алгебре, а именно, произведение, состоящее из числового множителя и одной или нескольких переменных, взятых каждая в неотрицательной целой степени .
При́знак Паска́ля — математический метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Быстрые алгоритмы — это область вычислительной математики, которая изучает алгоритмы вычисления заданной функции с заданной точностью с использованием как можно меньшего числа битовых операций.
Опера́ция — отображение, ставящее в соответствие одному или нескольким элементам множества (аргументам) другой элемент (значение). Термин «операция» как правило применяется к арифметическим или логическим действиям, в отличие от термина «оператор», который чаще применяется к некоторым отображениям множества на себя, имеющим замечательные свойства.
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Мультимножество в математике — обобщение понятия множества, допускающее включение одного и того же элемента по нескольку раз. Число элементов в мультимножестве, с учётом повторяющихся элементов, называется его размером или мощностью.
Длинная арифметика — выполняемые с помощью вычислительной машины арифметические операции (сложение, вычитание, умножение, деление, возведение в степень, элементарные функции) над числами, разрядность которых превышает длину машинного слова данной вычислительной машины. Эти операции реализуются не аппаратно, а программно, с использованием базовых аппаратных средств работы с числами меньших порядков. Частный случай — арифметика произвольной точности — относится к арифметике, в которой длина чисел ограничена...
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
Позиционная систе́ма счисле́ния (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).
Репди́джиты (англ. repdigit, от repeated digit — повторённая цифра), также репдигиты, однообра́зные чи́сла — натуральные числа, все цифры записи которых одинаковые. Обычно подразумевается запись в десятичной системе счисления.
Циклический код — линейный, блочный код, обладающий свойством цикличности, то есть каждая циклическая перестановка кодового слова также является кодовым словом. Используется для преобразования информации для защиты её от ошибок (см. Обнаружение и исправление ошибок).
Перечислительная комбинаторика (или исчисляющая комбинаторика) — раздел комбинаторики, который рассматривает задачи о перечислении, то есть подсчёте количества, или непосредственного построения и перебора, различных конфигураций (например, перестановок), образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.
Формула Вика — формула теории вероятностей, выражающая математическое ожидание многочлена от координат гауссовского вектора через элементы матрицы ковариаций. Одним из её применений является связь между средним значением полинома от следов степеней случайной матрицы большого размера и родами поверхностей, получаемыми склейкой заданных многоугольников при различных отождествлениях сторон.
Факторизация целых чисел для больших чисел является задачей большой сложности. Не существует никакого известного способа, чтобы решить эту задачу быстро. Её сложность лежит в основе некоторых алгоритмов шифрования с открытым ключом, таких как RSA.
Метод галеры (метод зачёркивания) — способ деления, который был самым используемым в Европе примерно до 1600-х годов, и продолжал быть популярным до конца XVIII века. Метод возник на основе китайского и индийского методов.
Двои́чный код — это способ представления данных в виде кода, в котором каждый разряд принимает одно из двух возможных значений, обычно обозначаемых цифрами 0 и 1. Разряд в этом случае называется двоичным разрядом.
Польская нотация (запись), также известна как префиксная нотация (запись), это форма записи логических, арифметических и алгебраических выражений. Характерная черта такой записи — оператор располагается слева от операндов. Если оператор имеет фиксированную арность, то в такой записи будут отсутствовать круглые скобки и она может быть интерпретирована без неоднозначности. Польский логик Ян Лукасевич изобрел эту запись примерно в 1920, чтобы упростить пропозициональную логику.
В математике,
несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.
Перенос и заём в арифметике — приёмы, применяемые в арифметических алгоритмах позиционных систем счисления при выполнении операций сложения и вычитания соответственно, а также (в составе тех же сложения и вычитания) и иных арифметичких операций. Перенос можно понимать как выделение умножения на основание системы счисления в отдельное слагаемое, с последующей перегруппировкой слагаемых.
Метод Петрика — метод для получения всех минимальных ДНФ из таблицы простых импликант. Метод Петрика довольно сложно применять для больших таблиц, но очень легко реализовать программно.
Биномиальное преобразование — последовательность преобразований или же преобразование последовательности, которая вычисляет её конечные разности. Понятие биномиального преобразования тесно связано с преобразованием Эйлера, которое является результатом применения биномиального преобразования к последовательности.
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Преобразование последовательностей — оператор, действующий на пространстве последовательностей. Преобразование последовательностей включает в себя такие понятия, как свёртка одной последовательности с другой, их суммирование и биномиальные преобразования, а также преобразования Мёбиуса и Стрилинга. Преобразования последовательности могут использоваться для ускорения сходимости ряда.
Целочисленная
последовательность называется полной последовательностью, если любое положительное целое число может быть выражено в виде суммы значений из последовательности, при этом каждое значение можно использовать только один раз.
Поря́дковые стати́стики в математической статистике - это упорядоченная по неубыванию выборка одинаково распределённых независимых случайных величин и её элементы, занимающие строго определенное место в ранжированной совокупности.
Подробнее: Порядковая статистика
Логарифмическая система счисления (LNS) — это арифметическая система, иногда используемая для представления вещественных чисел в компьютере и в цифровых аппаратных средствах, особенно в цифровой обработке сигналов.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
В математике, логике и информатике, рекурсивно перечислимым языком называется тип формального языка, также известный как частично разрешимый или распознаваемый по Тьюрингу. В иерархии Хомского он известен как язык типа 0. Класс всех рекурсивно перечислимых языков называется RE.
Подробнее: Рекурсивно перечислимый язык
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
В
интегрировании, разложение дробей позволяет интегрировать рациональные функции. Любая рациональная функция может быть представлена в виде суммы некоторого многочлена и некоторого числа дробных функций. Каждая дробь имеет знаменатель в виде многочлена первой или второй степени, причём многочлен в знаменателе, в свою очередь, также может быть возведён в некоторую положительную целую степень. (В случае комплексной переменной, знаменатели являются многочленами первой степени, и эти многочлены могут...
Псевдопреобразова́ние Адама́ра (англ. Pseudo-Hadamard Transform, PHT) — обратимое преобразование битовых строк, используемое в криптографии для обеспечения диффузии при шифровании. Количество бит на входе преобразования должно быть чётным, чтобы было возможным разделение строки на две части равной длины. Создателем преобразования является французский математик Жак Адамар.
Циклическое число — целое число, циклические перестановки цифр которого являются произведениями этого числа на последовательные числа. Наиболее известный пример такого числа — 142857...
Алгоритм Гёрцеля (англ. Goertzel algorithm) — это специальная реализация дискретного преобразования Фурье (ДПФ) в форме рекурсивного фильтра. Данный алгоритм был предложен Джеральдом Гёрцелем в 1958 году. В отличие от быстрого преобразования Фурье, вычисляющего все частотные компоненты ДПФ, алгоритм Гёрцеля позволяет эффективно вычислить значение одного частотного компонента.
Перебор делителей (пробное деление) — алгоритм факторизации или тестирования простоты числа путём полного перебора всех возможных потенциальных делителей.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...