Понятия со словосочетанием «выпуклый многоугольник»
Выпуклым многоугольником называется
многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Связанные понятия
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.
Подробнее: Изогональная фигура
Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше). В многоугольниках ребро является отрезком, лежащим на границе и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.
Описанный многоугольник, известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
k-Смежностный многогранник — это выпуклый многогранник, в котором любое k-элементное подмножество его вершин является множеством вершин некоторой грани этого многогранника.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.
Полудодекаэдр (англ. hemi-dodecahedron) — абстрактный правильный многогранник, содержащий половину граней правильного додекаэдра. Данный многогранник можно представить в виде проективного многогранника (замощение вещественной проективной плоскости шестью пятиугольниками), который можно изобразить при построении проективной плоскости в виде полусферы, где противоположные точки вдоль границы соединены и разбивают полусферу на три равные части.
В метрике теории графов выпуклым подграфом неориентированного графа G называется подграф, который включает любой кратчайший путь в G между любыми двумя вершинами. Таким образом, это аналогично определению выпуклого множества в геометрии — такое множество содержит отрезок, соединяющий любые две точки множества.
Подробнее: Выпуклый подграф
В геометрии n-угольный
осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
В геометрии тетраэдр Гурса — это тетраэдральная фундаментальная область построения Витхоффа. Каждая грань тетраэдра представляет зеркальную гиперплоскость на 3-мерной поверхности — 3-сферы, евклидового 3-мерного пространства и гиперболического 3-мерного пространства. Коксетер назвал область именем Эдуара Гурса, который первым обратил внимание на эти области. Тетраэдр Гурса является расширением теории треугольников Шварца для построения Витхоффа на сфере.
Полуикосаэдр — это абстрактный правильный многогранник, содержащий половину граней правильного икосаэдра. Он может быть реализован как проективный многогранник (мозаика проективной плоскости 10 треугольниками), который можно представить себе путём построения проективной плоскости как полусферы, противоположные точки которой вдоль границы соединены и делят полусферу на три равные части.
Многогранник, двойственный (или дуальный) к заданному многограннику — многогранник, у которого каждой грани исходного многогранника соответствует вершина двойственного, каждой вершине исходного — грань двойственного и каждому ребру исходного — ребро двойственного. Многогранник, двойственный двойственному, гомотетичен исходному.
Построение выпуклой оболочки методом «разделяй и властвуй» — алгоритм построения выпуклой оболочки.
Подробнее: Алгоритм Киркпатрика
Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.
Подробнее: Правильный четырёхмерный многогранник
В геометрии семиугольная мозаика — это правильная мозаика на гиперболической плоскости. Она представляется cимволом Шлефли {7,3} и имеет три правильных семиугольника в каждой вершине.
Развёртка многогранника — совокупность многоугольников, соответственно равных граням многогранника, с указанием того, какие стороны и вершины многоугольников соответствуют одним и тем же рёбрам и вершинам многогранника.
Многогранник Кли выпуклого многогранника P в пространстве любой размерности — это другой многогранник PK, образованный заменой каждой фасеты многогранника P невысокой пирамидой. Многогранники названы по имени американского математика Виктора Кли (Victor Klee)
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
Существует два определения хирального многогранника. По одному определению — это многогранник в прямом смысле хиральности (или "зеркальной симметричности"), то есть, что многогранник не имеет зеркальной симметрии. По этому определению многогранник, у которого отсутствует любая симметрия, вообще будет примером хирального многогранника.
Подробнее: Хиральный многогранник
Си́мплекс или n-мерный тетра́эдр (от лат. simplex ‘простой’) — геометрическая фигура, являющаяся n-мерным обобщением треугольника.
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
Усечённый кубооктаэдр, усечённый кубоктаэдр — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.
Полупростра́нство, ограниченное гиперплоскостью α, — это геометрическая фигура в пространстве, для которой выполняется следующее...
Плосконосый многогранник — это многогранник, полученный альтернированием (частичным усечением) соответствующего всеусечённого или усечённого многогранника, в зависимости от определения. Некоторые (не все) авторы включают в плосконосые многогранники антипризмы, так как они получаются таким построением из вырожденного «многогранника» всего с двумя гранями (диэдра).
Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.
Подробнее: Изоэдральное тело
Гиперокта́эдр — геометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб, ортоплекс, кросс-политоп.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Комплексный многогранник — это обобщение многогранника в вещественном пространстве на аналогичную структуру в комплексном гильбертовом пространстве, где к каждой вещественной размерности добавляется мнимая.
Граф многоугольников на окружности можно задать «чередующейся последовательностью». Такую последовательность можно получить разорвав окружность в произвольном месте и перечислив вершины многоугольников, идя вдоль окружности. Такая последовательность единственна.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
В геометрии 4-мерный многогранник — это многогранник в четырёхмерном пространстве. Многогранник является связанной замкнутой фигурой, состоящей из многогранных элементов меньшей размерности — вершин, рёбер, граней (многоугольников) и ячеек (3-мерных многогранников). Каждая грань принадлежит ровно двум ячейкам.
Многоугольник Петри для правильного многогранника в размерности n — это пространственный многоугольник, такой что любые (n-1) последовательных ребра (но не n) принадлежат одной (n-1)-мерной грани.