Понятия со словосочетанием «вероятность успеха»
Связанные понятия
Критерий Вальда (максиминный критерий) — один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма.
Дисконтирование — это определение стоимости денежного потока путём приведения стоимости всех выплат к определённому моменту времени.
Риск (теория принятия решений) — математическое ожидание функции потерь вследствие принятия решения. Является количественной оценкой последствий принятого решения. Минимизация риска является главным критерием оптимальности в теории принятия решений.
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
Вероятностное округление — это широко используемый подход для разработки и анализа таких аппроксимационных алгоритмов. Базовая идея — использование вероятностного метода для преобразования соответствующей оптимального решения задачи линейного программирования (ЛП) в приближённое к оптимальному решению исходной задачи.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Волати́льность, изменчивость (англ. volatility) — статистический финансовый показатель, характеризующий изменчивость цены на что-либо.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной...
Метод условных вероятностей преобразует такое доказательство во «вполне точном смысле» в эффективный детерминированный алгоритм, который гарантирует обнаружение объекта с желаемыми свойствами. То есть метод дерандомизирует доказательство. Основная идея — заменить каждый случайный выбор в случайном эксперименте детерминированным выбором таким образом, чтобы сохранить условное математическое ожидание неудачи, обусловленной выбором, меньшим 1.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Критерий Сэвиджа — один из критериев принятия решений в условиях неопределённости. Условиями неопределённости считается ситуация, когда последствия принимаемых решений неизвестны, и можно лишь приблизительно их оценить.
Характеристическая кривая задания (ХКЗ) - это график функции, который показывает вероятность выполнения определенного задания теста людьми с разными уровнями способностей.
Стохастическая оптимизация — класс алгоритмов оптимизации, использующая случайность в процессе поиска оптимума. Случайность может проявляться в разных вещах.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Функция потерь — функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения между истинным значением оцениваемого параметра и оценкой параметра.
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.
Подробнее: Дискретное равномерное распределение
Хвостовой риск или остаточный риск (англ. tail risk) — риск того, что цена актива или портфеля активов изменится больше, чем на три стандартных отклонения от текущей цены. При этом большинство управляющих активами контролируют только риск убытков, то есть риск снижения цены более чем на три стандартных отклонения ниже текущей цены.
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
В экономической науке, теории игр, теории принятия решений теория ожидаемой полезности — альтернатива математическому ожиданию, формула, которая может использоваться рациональным игроком при принятии решений.
Подробнее: Теория ожидаемой полезности
Вероятностная рекурсия — это цикл, ещё одно выполнение которого инициируется с некоторой вероятностью. Длина рекурсии неопределённа, но теоретически может быть бесконечным. На практике же рекурсия рано или поздно заканчивается, поскольку рекурсия по сути своей всегда ограничена (за исключением случаев, когда вероятность равна =100%, тогда это неограниченная рекурсия. Если не ввести ещё одно условие, останавливающее цикл, то это может вызвать переполнение буферов оперативной памяти и срабатывание...
Функция приспособленности (англ. fitness function) — вещественная или целочисленная функция одной или нескольких переменных, подлежащая оптимизации в результате работы генетического алгоритма, направляет эволюцию в сторону оптимального решения. Является одним из частных случаев целевой функции.
Аудиторский риск (ЭБУ 15 1/9) — объективно существующая вероятность невыявления возможных существенных неточностей и отклонений в бухгалтерской отчетности от реальных данных, возникающая в ходе аудиторской проверки.
Интерналии - издержки, которые не были обговорены участниками при заключении сделки а также издержки и приобретения у лиц не связанных со сделкой.
Критерий оптимальности (критерий оптимизации) — характерный показатель решения задачи, по значению которого оценивается оптимальность найденного решения, то есть максимальное удовлетворение поставленным требованиям. В одной задаче может быть установлено несколько критериев оптимальности.
Скалярное ранжирование — подход к решению многокритериальных задач принятия решений, когда множество показателей качества (критериев оптимальности) сводятся в один с помощью функции скаляризации — целевой функции задачи принятия решения.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
То́чечная оце́нка в математической статистике — это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Оптимальное решение является результатом одного из видов выбора (критериального выбора). Изучением проблем, связанных с выбором оптимальных решений, занимаются теория исследования операций и теория принятия решений.
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Комбинаторный взрыв — термин, используемый для описания эффекта резкого («взрывного») роста временной сложности алгоритма при увеличении размера входных данных задачи.
Мера риска - это функция, которая позволяет получить оценку финансового риска для некоторого портфеля активов в количественном выражении (чаще всего денежном). Мера риска используется для того, чтобы определить размер резервного капитала необходимого для удовлетворения требований регулятора.
Финансовая математика — раздел прикладной математики, имеющий дело с математическими задачами, связанными с финансовыми расчётами. В финансовой математике любой финансовый инструмент рассматривается с точки зрения генерируемого этим инструментом некоторого (возможно случайного) денежного потока.
Гиперэвристика (гиперэвристический алгоритм) — эвристический метод поиска, направленный на автоматизацию процесса выбора, комбинирования, обобщения или адаптации нескольких более простых эвристик (или их частей) для эффективного решения вычислительной задачи.
Модель упорядоченного выбора (упорядоченная регрессия, англ. ordered choice) — применяемая в эконометрике модель с упорядоченной (с ранжированными значениями) дискретной зависимой переменной, в качестве которой могут выступать, например, оценки чего-либо по пятибалльной шкале, рейтинги компаний и т. д. В рамках данной модели предполагается, что количество значений зависимой переменной конечно.
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Усечённая регрессия (англ. Truncated regression) или регрессия с урезанной выборкой — модель регрессии в условиях, когда выборка осуществляется только из тех наблюдений, которые, которые удовлетворяют априорным ограничениям, которые обычно формулируются как ограничение снизу и (или) сверху зависимой переменной. Урезание выборки приводит к смещенности МНК -оценок, поэтому оцениваются такие модели с помощью метода максимального правдоподобия.
Вероятностный алгоритм — алгоритм, предусматривающий обращение на определённых этапах своей работы к генератору случайных чисел с целью получения экономии во времени работы за счёт замены абсолютной достоверности результата достоверностью с некоторой вероятностью.
Геометри́ческое распределе́ние в теории вероятностей — распределение дискретной случайной величины, равной количеству испытаний случайного эксперимента до наблюдения первого «успеха».