Связанные понятия
Анализ заданий (пунктов теста) включает в себя набор статистических методов для исследования пригодности отдельных тестовых заданий, значения которых были получены, например, через письменный опрос в зависимости от цели исследования.
Зада́ча — проблемная ситуация с явно заданной целью, которую необходимо достичь; в более узком смысле задачей также называют саму эту цель, данную в рамках проблемной ситуации, то есть то, что требуется сделать. В первом значении задачей можно назвать, например, ситуацию, когда нужно достать предмет, находящийся очень высоко; второе значение слышно в указании: «Ваша задача — достать этот предмет». Несколько более жёсткое понимание «задачи» предполагает явными и определёнными не только цель, но и...
Метод обратного распространения ошибки (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С.И. Барцевым и В.А. Охониным (Красноярская группа). Это итеративный градиентный алгоритм, который используется...
Тест Айзенка — тест коэффициента интеллекта (IQ), разработанный английским психологом Гансом Айзенком. Известно восемь различных вариантов теста Айзенка на интеллект.
Тест стандартными прогрессивными матрицами Равена (Рейвена) — тест, предназначенный для дифференцировки испытуемых по уровню их интеллектуального развития. Авторы теста Джон Рейвен и Л. Пенроуз. Предложен в 1936 году. Тест Равена известен как один из наиболее «чистых» измерений фактора общего интеллекта g, выделенного Ч.Э. Спирменом. Успешность выполнения теста SPM интерпретируется как показатель способности к научению на основе обобщения собственного опыта и создания схем, позволяющих обрабатывать...
Выбор модели — это задача выбора статистической модели из набора моделей-кандидатов по имеющимся данным. В простейшем случае рассматривается существующий набор данных. Однако задача может вовлекать планирование экспериментов, так что сбор данных связан с задачей выбора модели. Если заданы кандидаты в модели с одинаковой силой предсказания или объяснения, наиболее простая модель скорее всего будет лучшим выбором (бритва Оккама).
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Обучение на примерах (англ. Learning from Examples) - вид обучения, при котором интеллектуальной системе предъявляется набор положительных и отрицательных примеров, связанных с какой-либо заранее неизвестной закономерностью. В интеллектуальных системах вырабатываются решающие правила, с помощью которых происходит разделение множества примеров на положительные и отрицательные. Качество разделения, как правило, проверяется экзаменационной выборкой примеров.
Надёжностью называется один из критериев качества теста, его устойчивость по отношению к погрешностям измерения. Различают два вида надёжности — надёжность как устойчивость и надёжность как внутреннюю согласованность.
Подробнее: Надёжность психологического теста
В теории вычислительной сложности сложность алгоритма в среднем — это количество неких вычислительных ресурсов (обычно — время), требуемое для работы алгоритма, усреднённое по всем возможным входным данным. Понятие часто противопоставляется сложности в худшем случае, где рассматривается максимальная сложность алгоритма по всем входным данным.
Обработка аналитических иерархий (Analytic Hierarchy Process, AHP) — структурированная техника принятия комплексных решений (en:MCDA). Она не дает ответа на вопрос, что правильно, а что нет, но позволяет человеку, принимающему решение, оценить, какой из рассматриваемых им вариантов лучше всего удовлетворяет его нуждам и его...
Подробнее: Аналитический иерархический процесс
Реше́ние зада́ч — процесс выполнения действий или мыслительных операций, направленный на достижение цели, заданной в рамках проблемной ситуации — задачи; является составной частью мышления.
Теория распознава́ния о́браза — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно...
Тестирование чёрного ящика или поведенческое тестирование — стратегия (метод) тестирования функционального поведения объекта (программы, системы) с точки зрения внешнего мира, при котором не используется знание о внутреннем устройстве тестируемого объекта. Под стратегией понимаются систематические методы отбора и создания тестов для тестового набора. Стратегия поведенческого теста исходит из технических требований и их спецификаций.
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Обучение без учителя (самообучение, спонтанное обучение, англ. Unsupervised learning) — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости...
Метод Стронгина — метод решения одномерных задач условной липшицевой оптимизации. Позволяет находить глобально оптимальное решение в задачах с ограничениями неравенствами при условии, что целевая функция задачи и левые части неравенств удовлетворяют условию Липшица в области поиска.
Цензурированная регрессия (англ. Censored regression) — регрессия, с зависимой переменной, наблюдаемой с ограничением (цензурированием) возможных значений. При этом модель может быть цензурирована только с одной стороны (снизу или сверху) или с обеих сторон. Цензурированная регрессия отличается от усеченной регрессии (англ. truncated regression), тем что значения факторов, в отличие от зависимой переменной, наблюдаются без ограничений.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
В математике теория момента остановки или марковский момент времени связана с проблемой выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты. Проблема момента остановки может быть найдена в области статистики, экономики и финансовой математики (связанные с ценообразованием на американские опционы). Самым ярким примером, относящимся к моменту остановки, является Задача о разборчивой невесте. Проблема момента...
Подробнее: Марковский момент
Метод группового учёта аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Скрытая марковская модель (СММ) — статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, и задачей ставится разгадывание неизвестных параметров на основе наблюдаемых. Полученные параметры могут быть использованы в дальнейшем анализе, например, для распознавания образов. СММ может быть рассмотрена как простейшая байесовская сеть доверия.
Задача о рюкзаке (или задача о ранце) — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Понятие внутренней согласованности
шкалы теста связано с проблемой надёжности результатов измерения. Сложность состоит в том, чтобы определить, насколько ответы на предложенные в тесте вопросы дадут соответствующую и полную информацию об измеряемом качестве. Только в случае составления теста таким образом, чтобы все вопросы в нём были подобны, однородны друг другу по психологическому содержанию, то есть «спрашивали» бы о проявлениях одного и того же качества, черты, характеристики человека, можно...
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Когнитивная гибкость (англ. cognitive flexibility) — умственная способность переключаться с одной мысли на другую, а также обдумывать несколько вещей одновременно. Общепринятого операционального определения этого понятия не существует, но исследователи сходятся в том, что когнитивная гибкость является компонентом исполнительной системы. Объектами исследований в этом направлении, в основном, становились дети школьного возраста, хотя индивидуальные различия проявляются на протяжении всей жизни. Мерами...
Отношение шансов — характеристика, применяемая в математической статистике (на русском обозначается аббревиатурой «ОШ», на английском «OR» от odds ratio) для количественного описания тесноты связи признака А с признаком Б в некоторой статистической популяции.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Эргодичность — специальное свойство некоторых динамических систем, состоящее в том, что в процессе эволюции почти каждое состояние с определённой вероятностью проходит вблизи любого другого состояния системы.
Трансвычисли́тельная зада́ча (англ. Transcomputational problem) — в теории сложности вычислений задача, для решения которой требуется обработка более чем 1093 бит информации. Число 1093, называемое «пределом Бремерманна», согласно Гансу-Иоахиму Бремерманну, представляет собой общее число бит, обрабатываемых гипотетическим компьютером размером с Землю, работающим с максимально возможной скоростью, за период времени, равный общему времени существования Земли. Термин «трансвычислительность» был предложен...
Анализ выживаемости (англ. survival analysis) — класс статистических моделей, позволяющих оценить вероятность наступления события.
Тео́рия приня́тия реше́ний — область исследования, вовлекающая понятия и методы математики, статистики, экономики, менеджмента и психологии с целью изучения закономерностей выбора людьми путей решения проблем и задач, а также способов достижения желаемого результата.
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Информационный критерий Акаике (AIC) — критерий, применяющийся исключительно для выбора из нескольких статистических моделей. Разработан в 1971 как «an information criterion» («(некий) информационный критерий») Хироцугу Акаике и предложен им в статье 1974 года.
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Для того, чтобы оценить программу, необходимо собрать информацию о результатах её реализации. Наиболее убедительными и наглядными являются результаты проведения реального эксперимента: наблюдатель сразу собственными глазами может опознать произошедшие изменения. Однако в число серьёзных недостатков этого метода входят дороговизна проведения серьёзных полномасштабных экспериментов, а также сложность их проведения, ведь подчас качественное оценивание политических программ требует получения экспериментальных...
Подробнее: Эконометрические методы в оценивании
Статистическая теория обучения — это модель для обучения машин на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи, биоинформатика и бейсбол.
Фидуциальный вывод (от лат. fides: вера, доверие), как разновидность статистического вывода, был впервые предложен сэром Р. Э. Фишером.
Макроконвейер — распределенная многопроцессорная система, обладающая программной и аппаратной поддержкой организации вычислений по макроконвейерному принципу. Этот принцип был предложен в 1978 году советским математиком В. М. Глушковым. Его суть состоит в том, что при распределении вычислительных заданий между процессорами каждому процессору на очередном шаге вычислений дается такое задание, которое может загрузить его работой на определенное время, без взаимодействия с другими процессорами. Последовательное...
Модель Миллса — способ оценки количества ошибок в программном коде, созданный в 1972 году программистом Харланом Миллсом. Он получил широкое распространение благодаря своей простоте и интуитивной привлекательности.