Понятия со словом «раздутие»

Разду́тие (называемое Тюриным сигма-процессом, а Маниным моноидальным преобразованием) — операция в алгебраической геометрии. В простейшем случае оно, грубо говоря, оно состоит в замене точки на множество всех прямых, проходящих через неё.

Связанные понятия

Касательная индикатриса — сферическая кривая строящаяся по данной гладкой регулярной кривой.
Теорема о повороте плоской кривой — дифференциальногеометрический вариант теоремы о сумме углов многоугольника.
Секционная кривизна — один из способов описания кривизны римановых многообразий.
Гиперболическая точка поверхности — в дифференциальной геометрии точка двухмерной поверхности, в которой гауссова кривизна поверхности отрицательна. В гиперболической точке главные кривизны имеют противоположный знак.
В математике линейным приближением, или линейной аппроксимацией, называют приближение произвольной функции с помощью линейной функции. Применяется для приближенных расчетов и в методе конечных разностей для решения дифференциальных уравнений.

Подробнее: Линейное приближение
Теорема Пуанкаре — Бендиксона — теорема в теории динамических систем, описывающая возможные типы предельного поведения траектории векторного поля на плоскости или на сфере. Теорема утверждает, что предельное поведение траекторий в этом случае регулярно, и не может быть хаотическим (невозможно даже наличие всюду плотных орбит).
Свойство удвоения — условие, накладываемое на меры, определённые на метрических пространствах, а также на сами метрические пространства.
В математике Теорема Риба об устойчивости утверждает, что если слоение коразмерности один имеет замкнутый слой с конечной фундаментальной группой, то все его слои замкнуты и имеют конечную фундаментальную группу. Доказана французским математиком Жоржем Рибом.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Развёртывающаяся поверхность в дифференциальной геометрии ― поверхность, обладающая нулевой гауссовой кривизной. Такая поверхность при помощи изгибания может быть наложена на плоскость. Обратно, развёртывающаяся поверхность может быть получена преобразованиями плоскости (например, сгибанием, свёрткой, склеиванием). В трёхмерном пространстве развёртывающаяся поверхность является линейчатой, но в четырёхмерном случае это свойство уже не всегда выполняется.
Теорема о сфере — общее название теорем, дающих достаточные условия на риманову метрику, гарантирующие гомеоморфность или диффеоморфность многообразия стандартной сфере.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Эволю́та плоской кривой — геометрическое место точек, являющихся центрами кривизны кривой.
Задача о предписанной скалярной кривизне заключается в построении римановой метрики с заданной скалярной кривизной.
Гипоцикло́ида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
Гиперболическое зацепление — это зацепление в 3-сфере с дополнением, имеющим полную риманову метрику постоянной отрицательной кривизны, то есть локально идентичной пространству Лобачевского.
Псевдосфе́ра (поверхность Бельтра́ми) — поверхность постоянной отрицательной кривизны, образуемая вращением трактрисы около её асимптоты. Название подчёркивает сходство и различие со сферой, которая является примером поверхности с кривизной, также постоянной, но положительной.
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности, не изменяется при изометрических изгибаниях.
Дифференциальная геометрия кривых — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Трубчатая окрестность подмногообразия в многообразии — это открытое множество, окружающее подмногообразие и локально устроенное подобно нормальному расслоению.
Кривизна́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Конхоида кривой (др.-греч. κόγχη — раковина) — плоская кривая, получающаяся при увеличении или уменьшении радиус-вектора каждой точки данной плоской кривой на постоянную величину.
Тангенциальнозначные формы — это обобщение дифференциальных форм, при котором множеством значений формы является касательное расслоение к многообразию.

Подробнее: Тангенциальнозначная форма
Нера́венство Ю́нга в математике — элементарное неравенство, используемое в доказательстве неравенства Гёльдера. Является частным случаем более общего неравенства Юнга — Фенхеля.
Теорема Буземана о центральных сечениях — теорема выпуклой геометрии о свойствах площадей центральных сечений симметричного выпуклого тела.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Риманов тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Коллапс или колапс — тип последовательности пространств, обычно римановых многообразий, которая существенно меняет локальную структуру (в частности теряет размерность) при переходе к пределу.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Минима́льный многочле́н ма́трицы — аннулирующий унитарный многочлен минимальной степени.
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Локально выпуклое пространство — линейное топологическое пространство с системой полунорм, удовлетворяющей некоторым условиям.
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Точка перегиба — точка плоской кривой, в которой её ориентированная кривизна меняет знак. Если кривая является графиком функции, то в этой точке выпуклая часть функции отделяется от вогнутой (то есть вторая производная функции меняет знак).
Трансверсальность — условие общего положения на пересечение гладких многообразий.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Вложение Куратовского — определённое изометрическое вложение метрического пространства в банахово пространство непрерывных ограниченных функций на нём.
Теорема Новикова о компактном слое: Двумерное слоение на трехмерном многообразии с нестягиваемой универсальной накрывающей имеет компактный слой.
Теорема Гильберта о погружении плоскости Лобачевского гласит, что плоскость Лобачевского не допускает гладкого изометрического погружения в трёхмерное евклидово пространство.
Выпуклый конус в линейной алгебре — подмножество векторного пространства над упорядоченным полем, которое замкнуто относительно линейных комбинаций с положительными коэффициентами.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я