Связанные понятия
Азо́т (N, лат. nitrogenium) — химический элемент 15-й группы, второго периода периодической системы с атомным номером 7. Относится к пниктогенам. Как простое вещество представляет собой двухатомный газ без цвета, вкуса и запаха. Один из самых распространённых элементов на Земле. Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов. Основной компонент воздуха (78,09 % объёма), разделением которого получают промышленный азот (более ¾ идёт на синтез аммиака). Применяется...
Кислоро́д (O, лат. oxygenium) — химический элемент 16-й группы, второго периода периодической системы, с атомным номером 8. Кислород — химически активный неметалл, является самым лёгким элементом из группы халькогенов. Как простое вещество при нормальных условиях представляет собой газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы...
Водоро́д (H, лат. hydrogenium) — химический элемент периодической системы с обозначением H и атомным номером 1. Обладая 1 а. е. м., водород является самым легким элементом в периодической таблице. Его одноатомная форма (H) - самое распространённое химическое вещество во Вселенной, составляющее примерно 75% всей барионной массы. Звезды, кроме компактных, в основном состоят из водородной плазмы. Самый распространенный изотоп водорода, называемый протием (название редко употребляется; обозначение...
Сте́пень окисле́ния (окислительное число) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле (см. #Условность).
Се́ра — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.
Упоминания в литературе
Во-первых, в поисках пропитания – необходимых микроэлементов и электронов – для обеспечения обмена веществ бактерии (а кроме них в архее никого пока не было) разлагали горные породы и минералы. Извлекать определенные элементы можно с помощью ферментов, которые, в отличие от химических катализаторов, способны ускорять реакции при обычных условиях, однако требуются в незначительных количествах даже при катализе большой массы вещества, и хелатных комплексов (от греч. ?ηλ? – раздвоенный; такие молекулы структурно похожи на клешни, которые прочно удерживают ионы металлов). Свидетельства бактериальной деятельности навсегда запечатлены в древних базальтах в виде субмиллиметровых в диаметре извилистых ходов, в которых сохранились глинистые минералы – следы переработки базальта, а иногда и органическое вещество (конечно, только в виде почти кристаллических сгустков органического
углерода – керогенов). Подобные следы, чтобы быть уверенными в их принадлежности микробам, ученые отыскали и в свежем вулканическом стекле: поскольку, кроме кремнезема, в нем содержится большое количество редких в окружающей среде элементов (например, закисное железо, Fe2+), как только базальтовая лава начинает остывать, первые же попавшие на ее поверхность бактериальные споры прорастают, и начинается бурное пиршество. (Каждый кубометр современного базальтового стекла – с содержанием до 17 % железа – может пропитать до 2,5 × 1016 анаэробных железобактерий.) Во-первых, бактерии ускоряют выветривание силикатных минералов (подобных вышеназванным пироксенам, оливинам, плагиоклазам) на порядок и проникают в них гораздо глубже, чем любые активные вещества под действием физических и химических сил. По прошествии всего нескольких лет горная порода превращается в насыщенное водой «нанорешето», разуплотняется, а такие продукты ее выветривания, как иллитовые и смектитовые глины, представляют собой субстрат-накопитель, ускоряющий в морской среде осаждение ионов калия. В дальнейшем новообразованная минеральная затравка способствует выплавке гранитного материала вместо базальтового.
Углерод – шестой по счету элемент таблицы Менделеева. Это означает, что его атом содержит шесть протонов (Z=6). Чистый углерод известен нам в виде алмаза, графита или угля. А валентность углерода в органических соединениях всегда равна 4. Это – важнейший факт, без знания которого понять устройство живых организмов просто невозможно.
Затем образовались минералы – микроскопические твердые образцы химического совершенства и кристаллической структуры. Первые минералы могли появиться только в условиях высокой плотности скоплений минералообразующих элементов и сравнительно низких температур, чтобы атомы смогли образовать кристаллы. Всего несколько миллионов лет спустя после Большого взрыва благоприятные условия для таких реакций возникли в разреженном и остывающем пространстве вокруг первых взорвавшихся звезд. Крошечные кристаллиты чистого
углерода в форме алмаза и графита стали, вероятно, первыми минералами во Вселенной. Эти первые кристаллы представляли собой нечто вроде пыли, отдельные частицы были очень мелкие, но, возможно, достаточные по величине, чтобы сверкнуть в космосе бриллиантовым блеском. К первым углеродистым образованиям вскоре добавились другие высокотемпературные твердые вещества, образованные из таких элементов, как магний, кальций, азот и кислород. Среди них были знакомые нам минералы вроде корунда, химического соединения алюминия с кислородом, которое особенно ценится в своих ярких цветных разновидностях – рубинах и сапфирах. Тогда же появились в небольшом количестве хризолиты (силикат магния с другими составляющими), ныне полудрагоценные камни, астрологические знаки рожденных в августе, и муассаниты (карбид кремния), известные в наше время как дешевый искусственный суррогат бриллиантов. Всего в межпланетной пыли содержалось около дюжины известных нам «полезных ископаемых». Таким образом, после взрыва первых звезд Вселенная начинала становиться разнообразнее.
Из всех химических элементов
углерод представляется неотъемлемой частью всего живого. Без этого элемента очень трудно представить себе жизнь на любой планете. “Виной” этому выдающаяся способность атомов углерода к формированию колец, цепей и других молекулярных структур сложной архитектуры. Углерод попадает в пищевую цепь в ходе фотосинтеза – процесса, при котором растения усваивают молекулы двуокиси углерода (углекислого газа) из воздуха и используют энергию света для включения атомов углерода в состав молекул сахаров. Весь углерод, содержащийся в телах животных (и наших), поступает из растений, а значит, из атмосферного CO2. Процесс замкнут: когда мы дышим, выделяем вещества во внешнюю среду, когда умираем – углерод возвращается в атмосферу.
Свойства вещества зависят от природы тех частиц, из которых оно состоит, типа связи и ее энергии, а также от типа кристаллической решетки. Так, например,
углерод в твердом состоянии существует в двух кристаллических формах: в виде графита с гексагональной решеткой и в виде алмаза с кубической решеткой. Возможность существования одного и того же вещества в нескольких кристаллических формах называется аллотропией или полиморфизмом. Этим свойством обладают некоторые металлы (олово, железо, титан, марганец и др.).
Связанные понятия (продолжение)
Просты́е вещества ́ — химические вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, химические элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.
Хими́ческая фо́рмула — условное обозначение химического состава и структуры соединений с помощью символов химических элементов, числовых и вспомогательных знаков (скобок, тире и т. п.). Химические формулы являются составной частью языка химии, на их основе составляются схемы и уравнения химических реакций, а также химическая классификация и номенклатура веществ. Одним из первых начал использовать их русский химик А. А. Иовский.
Хлор (от греч. χλωρός — «жёлто-зелёный») — химический элемент с атомным номером 17. Принадлежит к 17-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA), находится в третьем периоде таблицы. Атомная масса элемента 35,446...35,457 а. е. м. . Обозначается символом Cl (от лат. Chlorum). Химически активный неметалл. Входит в группу галогенов.
Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее...
Щёлочноземе́льные мета́ллы — химические элементы 2-й группы периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra), унбинилий (Ubn).
Ли́тий (Li, лат. lithium) — химический элемент первой группы, второго периода периодической системы с атомным номером 3. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета.
Фтор (F, лат. fluorum) — химический элемент 17-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VII группы, или к группе VIIA) с атомным номером 9. Самый химически активный неметалл и сильнейший окислитель, самый лёгкий элемент из группы галогенов. Как простое вещество при нормальных условиях фтор представляет собой двухатомный газ (формула F2) бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор. Токсичен...
Гидри́ды — соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом,.
Неорганические сульфиды (от лат. sulphur — сера) — класс химических соединений, представляющих собой соединения металлов (а также ряда неметаллов В, Si, Р, As) с серой (S), где она имеет степень окисления −2. Могут рассматриваться как соли сероводородной кислоты H2S. Свойства сульфидов сильно зависят от металлов, входящих в их состав.
Вале́нтность (от лат. valēns «имеющий силу») — способность атомов химических элементов образовывать определённое число химических связей.
Органические соединения, органические вещества — класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Органические соединения редки в земной коре, но обладают наибольшей важностью, потому что являются основой всех известных форм жизни. Основные дистилляты нефти считаются строительными блоками органических соединений. Органические соединения, кроме углерода (C...
Галоге́ны (от греч. ἁλός — «соль» и γένος — «рождение, происхождение»; иногда употребляется устаревшее название гало́иды) — химические элементы 17-й группы периодической таблицы химических элементов Д. И. Менделеева (по устаревшей классификации — элементы главной подгруппы VII группы).
Аллотро́пия (от др.-греч. ἄλλος «другой» + τρόπος «поворот, свойство») — существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам — так называемых аллотропных (или аллотропических) модификаций или форм.
Циа́н , дициа́н, (CN)2 — динитрил щавелевой кислоты, бесцветный высокотоксичный и огнеопасный газ с резким запахом; температура плавления tпл=−27,8 °C; температура кипения tкип=−21,15 °C; ограниченно растворим в воде, лучше — в спирте, диэтиловом эфире, уксусной кислоте.
Аммиа́к (нитрид водорода) — химическое cоединение азота и водорода с формулой NH3, при нормальных условиях — бесцветный газ с резким характерным запахом.
Неорганические вещества (неорганические соединения) — простые вещества и соединения, не являющиеся органическими, то есть, не содержащие углерода, а также некоторые углеродсодержащие соединения (карбиды, цианиды, карбонаты, оксиды углерода и некоторые другие вещества, которые традиционно относят к неорганическим). Неорганические вещества не имеют характерного для органических веществ углеродного скелета.
Углеводоро́дный радика́л (от лат. radix «корень»), также углеводоро́дный оста́ток в химии — группа атомов, соединённая с функциональной группой молекулы. Обычно при химических реакциях радикал переходит из одного соединения в другое без изменения. Но радикал и сам может содержать функциональные группы, поэтому с его «неизменностью» нужно быть осторожным: например, аминокислота аспарагиновая кислота содержит в той части молекулы, которая в общем виде рассматривается как остаток аминокислоты, ещё одну...
Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или более элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат).
Гидрокси́ды (гидроо́киси, водокиси) — неорганические соединения, содержащие в составе гидроксильную группу -OH. Известны гидроксиды почти всех химических элементов; некоторые из них встречаются в природе в виде минералов. Гидроксиды щелочных и щёлочноземельных металлов, а также аммония являются растворимыми и называются щелочами.
Халькоге́ны (от греч. χαλκος — медь (в широком смысле), руда (в узком смысле) и γενος — рождающий) — химические элементы 16-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы VI группы).
Карби́ды — соединения металлов и неметаллов с углеродом. Традиционно к карбидам относят соединения, где углерод имеет большую электроотрицательность, чем второй элемент (таким образом из карбидов исключаются такие соединения углерода, как оксиды, галогениды и т. п.)
Окисле́ние — это химический процесс, сопровождающийся увеличением степени окисления атома окисляемого вещества посредством передачи электронов от атома восстановителя (донора электронов) к атому окислителя (акцептору электронов).
Желе́зо (Fe от лат. Ferrum) — элемент восьмой группы (по старой классификации — побочной подгруппы восьмой группы) четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Один из самых распространённых в земной коре металлов: второе место после алюминия.
Фтороводоро́д (фтористый водород, гидрофторид, фторид водорода, HF) — бесцветный токсичный газ (при стандартных условиях) с резким запахом, при комнатной температуре существует преимущественно в виде димера H2F2, ниже 19,9°C — бесцветная подвижная летучая жидкость. Смешивается с водой в любом отношении с образованием фтороводородной (плавиковой) кислоты. Образует с водой азеотропную смесь с концентрацией 35,4 % HF.
Стандартные условия для температуры и давления — значения температуры и давления, с которыми соотносятся значения других физических величин, зависящих от давления и температуры. Принятые в разных дисциплинах и разных организациях точные значения давления и температуры в стандартных условиях могут различаться, поэтому указание значений физических величин (например, молярного объёма газа, электродного потенциала, скорости звука и так далее) без уточнения условий, в которых они приводятся, может приводить...
Полумета́ллы (металлоиды) — химические элементы, расположенные в периодической системе на границе между металлами и неметаллами. Для них характерно наличие ковалентной кристаллической решётки и металлической проводимости.
Ио́н (др.-греч. ἰόν «идущее») — частица, в которой общее число протонов не равно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего числа электронов, имеет отрицательный заряд и называется анионом.
Бори́ды — бинарные соединения бора с более электроположительными химическими элементами, в частности с металлами. Известны для большинства элементов подгрупп 1-12 (Ia-IIа и IIIб-VIIIб), а также для Аl, Si, As, P. Некоторые элементы подгрупп 11-12 (Iб-IIб) образуют бинарные системы с высоким содержанием бора (например, СuВ22, ZnB22), которые относят не к химическим соединениям, а к твердым растворам.
Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы): литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.
Бери́ллий (Be, лат. beryllium) — химический элемент второй группы, второго периода периодической системы с атомным номером 4. Как простое вещество представляет собой относительно твёрдый металл светло-серого цвета, имеет очень высокую стоимость. Высокотоксичен.
Нитриды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4).
Катио́н — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион аммония, Ca2+ — двухзарядный катион кальция. В электрическом поле, катионы притягиваются к отрицательному электроду — катоду.
Углерод — вещество с самым большим числом аллотропических модификаций (более 9 обнаруженных на данный момент).
Подробнее: Аллотропия углерода
Кре́мний (Si от лат. Silicium) — элемент четырнадцатой группы (по старой классификации — главной подгруппы четвёртой группы), третьего периода периодической системы химических элементов с атомным номером 14. Атомная масса 28,085. Неметалл, второй по распространённости химический элемент в земной коре (после кислорода). Исключительно важен для современной электроники.
Фо́сфор (от др.-греч. φῶς — свет и φέρω — несу; φωσφόρος — светоносный; лат. Phosphorus) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) третьего периода периодической системы Д. И. Менделеева; имеет атомный номер 15. Элемент входит в группу пниктогенов. Фосфор — один из распространённых элементов земной коры: его содержание составляет 0,08—0,09 % её массы. Концентрация в морской воде 0,07 мг/л. В свободном состоянии не встречается из-за высокой химической...
Ма́гний — элемент второй группы (по старой классификации — главной подгруппы второй группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.
Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами также является класс минералов, представляющих собой соединения металла с кислородом (см. Окислы).
Гидроксильная группа (гидроксогруппа, гидроксил) — функциональная группа OH органических и неорганических соединений, в которой атомы водорода и кислорода связаны ковалентной связью. В органической химии носит также название «спиртной группы».
Бор (B, лат. borum) — химический элемент 13-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе III группы, или к группе IIIA) с атомным номером 5. Бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен.
Хими́ческий элеме́нт — совокупность атомов с одинаковым зарядом атомных ядер. Атомное ядро состоит из протонов, число которых равно атомному номеру элемента, и нейтронов, число которых может быть различным. Каждый химический элемент имеет своё латинское название и химический символ, состоящий из одной или пары латинских букв, регламентированные ИЮПАК и приводятся, в частности, в таблице Периодической системы элементов Менделеева.
Силици́ды — соединения кремния с менее электроотрицательными элементами (как правило, металлами). Силициды известны для щелочных и щелочноземельных металлов, большей части d-металлов и f-металлов. Be, Ag, Au, Zn, Cd, Hg и все p-элементы силицидов не образуют.
Техне́ций — элемент седьмой группы (по устаревшей классификации — побочной подгруппы седьмой группы), пятого периода периодической системы химических элементов, атомный номер — 43. Обозначается символом Tc (лат. Technetium). Простое вещество технеций — радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов. Первый из синтезированных химических элементов. Только около 18 000 тонн естественно образовавшегося технеция могут быть найдены в любой...
Ацетилениды (Ацетиленистые соедине́ния) — соли ацетилена и его производных, в котором один или два атома водорода замещены атомами элементов, более электроположительных, чем углерод. Углерод в ацетиленидах находится в sp-гибридизации.
Гидроксо́ний (оксоний, гидроний) Н3О+ — комплексный ион, соединение протона с молекулой воды.
Упоминания в литературе (продолжение)
Круговорот
углерода . Предполагается, что углерод распре делен в довольно тонком слое земной коры, в атмосфере в виде диоксида и оксида углерода, в животной и растительной биомассе. Однако, основные запасы углерода в природе содержатся в минералах и горных породах, в основном в форме карбонатов (СаСО3) и гидрокарбонатов (Ca(HCO3)2), представляющих собой растворимые и нерастворимые донные отложения в Мировом океане, накапливающиеся за миллионы лет геологической истории Земли. Этот процесс продолжается и в настоящее время. Углекислый газ, содержащийся в воздухе и воде, составляет запас углерода, участвующего в создании биомассы. Содержание CO2 в атмосфере не стабильно, оно подвержено сезонным изменениям и наблюдается его увеличение, связываемое с антропогенным фактором.
Опыт показывает, что удельный выход газа составляет порядка 500 л на 1 кг сухого органического материала, который составляет до 40 % ТКО. Из каждой тонны отходов образуется до 250 м3 биогаза, состоящего из 50–60 % метана, 30–45 % диоксида
углерода , 1–2% сероводорода и 1–2% – соединения азота, водорода, кислорода и других (всего до 32 компонентов). Состав биогаза зависит от номенклатуры и качества исходного органического сырья, степени его сортировки и подготовки, соблюдения технологии процесса.
Исключительно благотворное влияние на кинетику и энергетику восстановительных реакций в системе Si – C—O оказывает специфичная структура шунгитовых пород. Структура зажогинского шунгита представляет собой равномерное распределение силикатных минералов с размерностью частиц менее 10 мкм в углеродной матрице. Таким образом, создается тесный и развитый (до 20 м2/г) контакт между силикатами и
углеродом . Это обстоятельство в свою очередь повышает роль твердофазных реакций в восстановительном процессе и создает ряд технологических преимуществ при использовании шунгитов для замены металлургического кокса и кремнеземистого сырья в процессе получения карбида кремния, выплавки кремнистых чугунов и ферросплавов.
Первое место среди макроэлементов принадлежит
углероду . Он характеризуется способностью образовывать почти все типы химических связей. Углерод в большей степени, чем прочие элементы, способен к формированию крупных молекул. Его атомы могут соединяться между собой, образуя кольца и цепи. В результате возникают сложные молекулы больших размеров, характеризующиеся огромным разнообразием (на сегодня описано более 10 млн органических веществ). Кроме того, атомы углерода в одном и том же химическом соединении проявляют и окислительные, и восстановительные свойства.
Известно, что подавляющее количество всех встречающихся в природе химических элементов (81) обнаружены в организме человека. 12 элементов называют структурными, так как они составляют 99 % элементного состава человеческого организма (
углерод , кислород, водород, азот, кальций, магний, натрий, калий, сера, фосфор, фтор, хлор). При этом основным строительным материалом являются четыре элемента: азот, водород, кислород и углерод. Остальные элементы, находясь в организме в незначительных по объему количествах, играют важную роль, влияя на здоровье и состояние нашего организма.
Сырьем для получения ацетилена являются карбид кальция и вода. Карбид кальция представляет собой твердое вещество, по внешнему виду и твердости напоминающее камень. Его получают путем соединения
углерода с известью в электрической печи при температуре 3000°С. Затем дробят и укладывают в бочки, на которых указывается размер камней, что является важной характеристикой для использования карбида в генераторах. Бочку необходимо закрывать герметично, так как карбид кальция сильно поглощает пары воды, содержащиеся в воздухе. При этом скорость реакции намного медленнее, чем в генераторе, тем не менее, в результате ее также получается ацетилен, который может смешиваться с воздухом, находящимся в бочке, и образовывать взрывчатую смесь.
Прошло еще несколько сотен миллионолетий, и самые крупные звезды после истощения запасов водорода начали взрываться. При этом давление и температура в недрах звезды достигали колоссальных величин. Это создавало необходимые условия для синтеза тяжелых элементов. Все элементы тяжелее гелия, в том числе необходимые для жизни
углерод , кислород, азот, фосфор, сера и др., могли образоваться лишь во время таких взрывов. Звезды первого поколения стали фабрикой по производству атомов, необходимых для будущей жизни.
Углерод в чугуне может находится в химически связанном состоянии в виде цементита или в структурно свободном состоянии в виде графита.
Опасайтесь подделок! Из любой высушенной травы, даже не лекарственной, но обладающей горечью, можно с помощью длительной варки и упаривания получить горькую черную вязкую массу, практически не отличимую от настоящего мумие. Распознать подделку можно только по запаху. Поэтому еще раз напомним, что приобретать препарат стоит только в аптеках. Сложность и изменчивость состава мумие в зависимости от вида не позволяют сейчас вывести его окончательную формулу. В целом же усредненная картина выглядит так. Объем неорганической части превышает органическую. Обычно в 2–4 раза. В органической части содержатся
углерод (20–57 %), кислород (30–48 %), водород (4 – 18 %) и азот (3–8 %) в составе различных кислот, смол и белков; в неорганической части – минералы кальция, натрия, калия, магния и алюминия. Кроме того, в неорганической части присутствуют еще около 30 редкоземельных микроэлементов: рубидий, цезий, барий, стронций, олово, хром, сурьма и др. Количество каждого из них – от следов до долей процента, но именно этих веществ зачастую не хватает в нашем организме и мумие удовлетворяет потребность в них полностью.
Первичным источником энергии, который используется на тепловых электростанциях, является ископаемое топливо органического происхождения. Горючие вещества, входящие в состав топлива, –
углерод С, водород Н и сера S (за исключением небольшой части серы, содержащейся в минеральной массе топлива – сульфатная сера). Кроме горючих веществ, в состав топлива входят кислород О (поддерживает горение, но теплоты не выделяет) и азот N (не участвующий в реакциях горения инертный газ). Кислород и азот иногда называют внутренним балластом топлива, в отличие от внешнего балласта, к которому относят золу и влагу.
Окисление примесей, содержащихся в стали, происходит либо непосредственно в дуге, либо при взаимодействии с оксидом железа, растворенного в сварочной ванне металла. Значительное сродство
углерода , марганца и кремния с кислородом приводит к сильному уменьшению содержания этих примесей в расплавленном металле шва. Таким образом, кислород находится в стали преимущественно в виде оксидных включений железа, марганца и кремния.
Вода считается универсальным растворителем. Двуокись
углерода , сероводород, сернистый газ и аммиак хорошо растворяются в ней, все остальные газы – только в том случае, если способны вступать с ней в биохимическую реакцию. Некоторые газы, взаи модействуя с водой, образуют кристаллогидраты – многочисленные соединения. К ним относятся сероводород, хлор, пропан, аргон, ксенон и др. Более сложные группы возникают при взаимодействии ее с различными кислотами, основаниями и солями, которые изменяют структуру жидкости. Например, морская вода содержит почти все элементы периодической системы Менделеева.
Вода считается универсальным растворителем. Двуокись
углерода , сероводород, сернистый газ и аммиак хорошо растворяются в ней, все остальные газы – только в том случае, если способны вступать с ней в биохимическую реакцию. Некоторые газы, взаимодействуя с водой, образуют кристаллогидраты – многочисленные соединения. К ним относятся сероводород, хлор, пропан, аргон, ксенон и др. Более сложные группы возникают при взаимодействии ее с различными кислотами, основаниями и солями, которые изменяют структуру жидкости. Например, морская вода содержит почти все элементы периодической системы Менделеева.
Химические методы в санитарно-гигиенических исследованиях используются при изучении химического состава воздуха, воды, пищевых продуктов; они широко применяются для определения ядохимикатов, различных синтетических веществ и разнообразных токсичных веществ, поступающих в биосферу. Важнейшей особенностью химических методов является их высокая чувствительность, позволяющая определить в некоторых случаях миллионные доли миллиграмма вещества на единицу объема воздуха, воды или единицу массы какого-либо продукта. С помощью химических методов при санитарно-гигиенических исследованиях определяются примеси, не свойственные природному составу среды, которые могут оказывать неблагоприятное воздействие на организм, служить показателем санитарного неблагополучия изучаемого объекта (наличие в воздухе оксида
углерода , диоксида серы и др.).
Свою «долю» в загрязнение атмосферы вносили и вносят промышленные предприятия в развивающихся и индустриальных странах Азии, Африки и Латинской Америки. Другим поставщиком дыма и загрязняющих веществ в атмосферу являются частые лесные пожары в различных районах Земли и особенно в России, на огромных площадях в Сибири и на Дальнем Востоке. В крупных городах – промышленных центрах при неблагоприятных погодных условиях (отсутствии ветра и температурной инверсии в слое 300–400 м – вместо обычного понижения температура воздуха повышается) летом или зимой образуется смог – ядовитая смесь дыма, тумана и пыли, содержащая оксиды серы,
углерода , азота, органические пероксиды, альдегиды и т. д. Смог вызывает обострение респираторных заболеваний, раздражение и слезоточивость глаз, общее ухудшение физического состояния вплоть до летального исхода (например, в 1952 г. в Лондоне от смога за 2 недели погибло более 4000 человек). Другим последствием загрязнения атмосферы является кислотный дождь – дождь или снег, подкисленный до рН < 5,6 из-за растворения в атмосферной влаге компонентов различных техногенных выбросов (диоксида серы, оксиды азота, хлороводорода и др.). Кислотные дожди обычно выпадают недалеко от крупных промышленных районов, в результате их воздействия происходят:
Предельные углеводороды с числом атомов
углерода от 1 до 4 при обычных условиях представляют собой газы; углеводороды с числом атомов от 5 до 15 – жидкости; углеводороды с числом атомов 16 и выше представляют собой твердые тела. Температуры плавления и кипения углеводородов повышаются с укрупнением молекул. Здесь отчетливо видно проявление закона диалектики о переходе количества в качество.
В школьном учебнике по органической химии есть тема «Предельные (насыщенные) углеводороды», которые называются также алканами. В учебнике говорится, что начиная с бутана С4Н10 для каждого алкана существуют структурные изомеры с разветвленной цепью. Они имеют одинаковый состав, но разное строение. Примером могут служить бутан и изобутан (два изомера С4Н10), пентан, 2-метилбутан и 2,2-диметилпропан (три изомера С5Н12) и т. д. Написав структурные формулы всех изомеров, нетрудно выяснить, что у гексана С6Н14 пять изомеров, а у гептана С7Н16– девять. Дальше дело пойдет труднее: с увеличением числа атомов
углерода число изомеров растет очень быстро, достигая астрономических величин. Например, у октана С8Н18 изомеров уже 18, у нонана С9Н20– 35, у декана С10Н22 – 75, у эйкозана С20Н42 – 366 319, у триаконтана С30Н62 – 4 111 846 763, у тетраконтана С40Н82 – 62 481 801 147 341… Эти числа значительно возрастут, если рассматривать также зеркально-симметричные молекулы – стереоизомеры: с 9 до 11 для гептана, с 75 до 136 для декана, с 366 319 до 3 396 844 для эйкозана, с 5,921 · 1039 до 1,373 · 1046 для гектана С100 и т. д.
При сварке в CO2 дуга горит в атмосфере этого газа, поэтому интенсивность образования оксидов азота очень небольшая по сравнению с монооксидом
углерода .
Первый промышленный способ получения соды был открыт в России. В 1764 году химик Эрик Густав Лаксман установил, что соду можно получить посредством спекания природного сульфата натрия и древесного угля. При этом происходит реакция, в результате которой, помимо карбоната натрия, образуются 2 газообразных вещества – диоксид
углерода и диоксид серы.
Образовавшиеся продукты горения, поднимаясь вверх и встречаясь с раскаленным топливом, восстанавливаются до окиси
углерода и водорода. При дальнейшем движении вверх сильно нагретых продуктов восстановления происходит термическое разложение топлива (зона разложения), и продукты восстановления обогащаются продуктами разложения (газами, смоляными и водяными парами). В результате разложения топлива образуется вначале полукокс, а затем и кокс, на поверхности которых при их опускании вниз происходит восстановление продуктов горения.
Углерод в чугуне может находиться в виде карбида Fе3С. Такой чугун, называемый белым, обладает повышенной твердостью и плохо поддается механической обработке. В сером чугуне углерод находится в свободном состоянии в виде прослоек графита и только частично может быть в виде вторичных карбидов.
Кислород – это химический элемент, самый распространенный во Вселенной. Он необходим для жизни на Земле. Им дышат люди, животные и растения. Кислород соединяется практически со всеми другими химическими элементами. Вместе с азотом он входит в состав воздуха, а в соединении с водородом образует воду. В живых организмах кислород соединяется с водородом,
углеродом и другими веществами, составляя в человеческом теле примерно 2/3 общего веса.
Мной обнаружено, что в легких также усваивается и азот (N2). Считаю доказанным, что азот из молекулярного своего соединения (N2) преобразуется в окись
углерода (СО). При этом легочная ткань сильно разогревается, так как ядерное преобразование азота в окись углерода сопровождается выделением тепловой энергии.
Среди элементов, которые входят в состав нашего тела, кальций занимает пятое место после четырех главных элементов:
углерода , кислорода, водорода и азота. Название кальцию дано от латинского слова «calke», что в переводе означает «известь» или «мягкий камень». В чистом виде кальций – металл белого цвета, ковкий и довольно твердый. В наружной оболочке атома кальция находятся два валентных электрона, которые очень непрочно связаны с ядром, поэтому в чистом виде кальций в природе не найти. Чаще он встречается в виде карбоната, сульфата, фосфата кальция. Мрамор, известняк, мел – это карбонат кальция. Сталактиты и сталагмиты – тоже разновидность карбоната кальция. Нет в мире речки, моря или ручейка, где бы не были растворены соли кальция. Из известняка и других элементов сооружены египетские пирамиды, Великая китайская стена и белокаменная Москва.
Поверхностные и внутренние поры возникают вследствие попадания в металл шва газов (водород, азот, углекислый газ и др.), образовавшихся при сварке. Водород образуется из влаги, масла и компонентов покрытия электродов. Азот в металл шва попадает из атмосферного воздуха при недостаточно качественной защите расплавленного металла шва. Оксид
углерода образуется в процессе сварки стали при выгорании углерода, содержащегося в металле. Если свариваемая сталь и электроды имеют повышенное содержание углерода, то при недостатке в сварочной ванне раскислителей и при большой скорости сварки оксид углерода не успевает выделиться и остается в металле шва. Таким образом, пористость является результатом плохой подготовки свариваемых кромок (загрязненность, ржавчина, замасленность), применения электродов с сырым покрытием, влажного флюса, недостатка раскислителей, больших скоростей сварки.
Вторая проблема чисто химическая, и связана она с формой молекул аминокислот и сахаров в живых организмах. Поскольку связи атома
углерода (а их четыре) направлены к вершинам пирамиды, возможны два способа размещения четырех разных групп вокруг такого атома, и эти два способа являются зеркальными отражениями друг друга, подобно левой и правой руке (рис. 5.2). Подобное свойство веществ называется еще хиральностью (от др.-гр. ?ειρ – «рука»). Молекулы с такими свойствами называются еще «оптически активными». Это название – «оптическая активность» – напоминает о свойстве подобных веществ поворачивать плоскость поляризации проходящего через них света; хиральные молекулы поворачивают плоскость поляризации по-разному, т. е. являются оптическими изомерами[4]. Оптическая активность позволила, например, Луи Пастеру разделить левовращающий и правовращающий изомеры винной кислоты, просто сортируя их кристаллы пинцетом: в поляризованном свете одни кристаллы были темными, а другие – светлыми. Он же показал, что плесень может питаться только правовращающим изомером винной кислоты.
Минеральный обмен важен для синтеза тела бактерий. Для него необходимы не только азот и
углерод , но и зольные элементы – сера, фосфор, калий и кальций, а также микроэлементы – бор, молибден, цинк, марганец, кобальт, никель, йод, бром, медь и др. В состав цитоплазмы бактерий входит сера, которая участвует в синтетических реакциях в виде R-SH. Данная сера восстановленной формы обладает высокой реактивностью и легко поддается дегидрированию с последующим превращением в сложные соединения, которые при гидрировании восстанавливаются, благодаря чему регулируется окислительно-восстановительный потенциал в цитоплазме бактерии.
Высокая молекулярная масса – natural polymer – белки – крахмал – целлюлоза – латекс – to be joined sequentially – амидная связь – small molecules – двойная связь между атомами
углерода – to form a chain – быть сделанным из – linear chains – разветвленные цепи – three-dimensional structures – повторяющийся структурный фрагмент – organic compounds – неорганический полимер – covalent chemical bond – реакция полимеризации – alternating silicon and oxygen atoms – химическое превращение – deoxyribonucleic acid – natural polymer – современная жизнь – solid material – соединяться последовательно – waste water treatment – линейные цепи – nutritional emulsion – полимерные наполнители – plastics and elastomers – твердое вещество – disposable consumer goods – очистка сточных вод – high molecular weight – образовывать цепь – contemporary life – трехмерные структуры.
Есть два весьма практичных и простых способа разделения всех веществ на нашей доске. Во-первых, можно выделить органические и неорганические молекулы – то есть, попросту говоря, отделить вещества, в которых есть
углерод , от тех, в которых углерода нет. В общем можно сказать, что углеродсодержащие вещества могут быть химически модифицированы в результате процессов, происходящих в живых организмах, и считаются основой жизни. Все необходимые для существования живых организмов молекулы – сахара, жиры, белки, ДНК и РНК, липидная мембрана и т. д. – являются органическими, так как содержат углерод.
Сварка этих видов сталей затруднена по ряду причин. В процессе сварки происходит частичное выгорание легирующих примесей и
углерода . Вследствие малой теплопроводности возможен перегрев свариваемого металла. Эти стали отличает повышенная склонность к образованию закалочных структур, а больший, чем у низкоуглеродистых сталей, коэффициент линейного расширения может вызвать значительные деформации и напряжения, связанные с тепловым влиянием дуги. Причем, чем больше в стали углерода и легирующих примесей, тем сильнее проявляются эти свойства. Для устранения влияния перечисленных причин на качество сварного соединения рекомендуется: