Пучок (математика)

  • Пучок — структура, используемая для установления отношений между локальными и глобальными данными.

    Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.

Источник: Википедия

Связанные понятия

В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.

Подробнее: Когерентный пучок
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.

Подробнее: Монодромия
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
В математике термин матрица Картана имеет три значения. Все они названы по имени французского математика Эли Картана. Фактически, матрицы Картана в контексте алгебр Ли впервые исследовал Вильгельм Киллинг, в то время как форма Киллинга принадлежит Картану.
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.

Подробнее: Кэлеров дифференциал

Упоминания в литературе

Одномерность записи информации представляет собой не что иное как овеществленную одномерность времени. Грампластинка, CD диск, магнитофонная пленка, конвейеры на различные рода производствах наглядно демонстрируют способность материи осуществлять последовательность операций во времени, в случае, если она сама структурирована соответствующим образом или, иными словами, организована в пространстве. Конечно информацию можно считать и с объема. Это голографический принцип записи, для которого требуется пучок когерентного света. Но природа не озаботилась созданием лазера, а потому, реально работать с информацией способна только одномерная структура. Плоскость и объем в этом смысле оказались под запретом эволюции. Кроме того, одномерность генов сочеталась с их микроскопическими размерами. Одиночные молекулы полимеров выигрывали в скорости у всех остальных структур при построении своих копий. Та обеспечивалось использование максимальной поверхности при минимальном объеме. «Использование веществ, пригодных для построения копий – им легче было делать в одиночку. Одиночные молекулы побеждали. Одномерность была оружием»[116].
Раз жизнь поддерживается на всех масштабных уровнях такими иерархическими сетями, естественно предположить, что ключ к степенным аллометрическим законам масштабирования с четвертными показателями и, следовательно, к общему определению поведения биологических систем следует искать именно в общих физических и математических свойствах этих сетей. Другими словами, несмотря на огромное разнообразие их структур, возникших в процессе эволюции, – некоторые из них состоят из трубок подобно водопроводной сети наших домов, другие образованы пучками волокон подобно электрическим проводам, а некоторые просто представляют собой диффузионные каналы, – предполагается, что все они подчиняются одним и тем же физическим и математическим принципам.
Поскольку кроме рассмотренных крайних случаев возможны и все промежуточные, то общая картина интерференции может выглядеть более сложно. В общем случае при приходе двух совпадающих по частоте и имеющих неизменную разность фаз (когерентных) волн в точках среды, куда обе волны приходят в фазе, они усиливают друг друга, а в точках, куда они приходят в противофазе, – ослабляют. В результате получается картина так называемых интерференционных полос. В частности, в случае пучка света, падающего перпендикулярно на экран с двумя щелями, на стоящем за ним параллельном экране максимум интенсивности наблюдается в центре геометрической тени. На сечении экрана плоскостью, проходящей через середину между щелями перпендикулярно экранам, наблюдается максимум интенсивности света, и это будет повторяться при разности расстояний до щелей кратной длине волны. В интервале между этими максимумами интенсивность света будет убывать к середине этого интервала, где освещенность будет равна нулю, так как световые волны от двух щелей приходят туда в противофазе. Эта картина изображена на правой части рис. 7.2, где справа изображен график интенсивности суммарной волны. Это классический опыт по доказательству волнового (а не корпускулярного, как предполагал Ньютон) характера света.
Так, в частности, человеческие эмоции, как пучки интенциональных энергий, воздействуют на удалённые объекты, например, как подтверждено опытами, на молекулы ДНК [433, p. 590]. Возникает вопрос: почему в конкретной ситуации именно те или иные элементы набирают максимальный вес, фокусируя и концентрируя в себе больший по сравнению с другими интенционально-энергетический потенциал? Возможно, ответ вообще не может быть дан в виде общей формулы. Не менее труден и вопрос о том, почему в такого рода иерархических взаимодействиях более сложные структуры всегда себе подчиняют более простые. На этот счёт можно предположить, что у них как у более интенционально плотных и насыщенных энергетический потенциал тоже более высокий.
Многие эффекты СТО противоречат повседневному опыту (интуиции), кажутся невероятными и даже невозможными. Это вызывает сомнения в основах теории у многих людей, интересующихся наукой. Особое неприятие вызывает второй принцип – сложение скоростей. По мнению любителей, скорость света должна складываться со скоростью источника, как следовало бы из преобразований Галилея (баллистическая гипотеза). Неизменность скорости света давно подтверждена напрямую при сравнении света, испускаемого двумя экваториальными краями вращающегося Солнца. Однако сторонники баллистической гипотезы возражают тем, что перед сравнением лучей свет пропускался через оптику телескопа, а переизлучение преломляющей средой как бы приводит к уравниванию скоростей двух пучков.
Все вышеизложенное справедливо и для близко расположенного от глаза предмета, т. е. для непараллельных пучков света. В этом случае изображение точки в собирающей линзе находится не в ее фокусе и, следовательно, при движениях глаза изменяет свое положение, перемещается относительно сетчатки. Однако это изображение располагается на точно таком же расстоянии и от фокуса рассеивающей линзы (фокусы линз совмещены). За счет этого при движениях глаза происходит оптическая компенсация возникающих перемещений изображения, получаемого в первой линзе. В оптическом смысле происходит как бы сдвиг центра вращения глаза на величину, равную сдвигу изображения относительно совмещенных фокусов линз. Следовательно, все рассуждения, проведенные для параллельных пучков света, остаются справедливыми. Соответствующие оптические построения представлены на рисунке 1.29.

Связанные понятия (продолжение)

Ориента́ция, в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
В математике, матричная функция — это функция, отображающая матрицу в другую матрицу.
Поток — обобщение понятия подмногообразия играющее ключевую роль в геометрической теории меры.
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических...
Метризуемое пространство — топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой.
В этой статье рассматривается математический базис общей теории относительности.

Подробнее: Математическая формулировка общей теории относительности
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны...
Конец топологического пространства — грубо говоря, компонента связности его «идеальной границы».
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Окольцованное пространство — топологическое пространство, каждому открытому множеству которого сопоставлено коммутативное кольцо «функций» на этом множестве. Окольцованные пространства, в частности, используются при определении схем.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Размерность Вапника — Червоненкиса или VC-размерность — это характеристика семейства алгоритмов для решения задачи классификации с двумя классами, характеризующая сложность или ёмкость этого семейства. Это одно из ключевых понятий в теории Вапника-Червоненкиса о статистическом машинном обучении, названное в честь Владимира Вапника и Алексея Червоненкиса.
Коммутативное кольцо — кольцо, в котором операция умножения коммутативна (обычно также подразумевается её ассоциативность и существование единицы). Изучением свойств коммутативных колец занимается коммутативная алгебра.
Непрерывная функция — функция, которая меняется без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Кратномасштабный анализ (КМА) является инструментом построения базисов вейвлетов. Он был разработан в 1988/89 гг. Малла и И. Мейром. Идея кратномасштабного анализа заключается в том, что разложение сигнала производится по ортогональному базису, образованному сдвигами и кратномасштабными копиями вейвлетной функции. Свертка сигнала с вейвлетами позволяет выделить характерные особенности сигнала в области локализации этих вейвлетов.
В гомологической алгебре и алгебраической топологии спектральная последовательность — это средство вычисления групп гомологий путём последовательных приближений. С момента их введения Жаном Лере они стали важным вычислительным средством, особенно в алгебраической топологии, алгебраической геометрии и гомологической алгебре.

Подробнее: Спектральная последовательность
Дифференциальное исчисление над коммутативными алгебрами — раздел коммутативной алгебры, возникший в семидесятых годах прошлого века.
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Теорема Сарда — одна из теорем математического анализа, имеющих важные приложения в теории катастроф и теории динамических систем.Названа в честь американского математика Артура Сарда.
Приближение с помощью кривых — это процесс построения кривой или математической функции, которая наилучшим образом приближается к заданным точкам с возможными ограничениями на кривую . Для построения такого приближения может использоваться либо интерполяция , где требуется точное прохождение кривой через точки, либо сглаживание, когда «сглаживающая» функция проходит через точки приближённо. Связанный раздел — регрессионный анализ, который фокусируется, главным образом, на вопросах статистического...
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Свобо́дный мо́дуль — модуль F над кольцом R (как правило, считаемым ассоциативным c единичным элементом), если он либо является нулевым, либо обладает базисом, то есть непустой системой S элементов e1,…ei…, которая является линейно независимой и порождает F. Само кольцо R, рассматриваемое как левый модуль над собой, очевидно обладает базисом, состоящим из одного единичного элемента кольца, а каждый модуль с конечным базисом из n элементов изоморфен прямой сумме Rn колец R, рассматриваемых как модули...
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Диакоптика, или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
Субдифференциал функции f, заданной на банаховом пространстве E — это один из способов обобщить понятие производной на произвольные функции. Хотя при его использовании приходится пожертвовать однозначностью отображения (значения субдифференциала в общем случае — множества, а не отдельные точки), он оказывается довольно удобным: любая выпуклая функция оказывается субдифференцируемой на всей области определения. В тех случаях, когда о дифференцируемости функции заранее ничего не известно, это оказывается...
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Сглаживающие операторы — это гладкие функции со специальными свойствами, используемые в теории распределений для построения последовательности гладких функций, приближающей негладкую (обобщённую) функцию с помощью свёртки. Интуитивно, имея функцию с особенностями и осуществляя её свёртку со сглаживающей функцией, получаем «сглаженную функцию», в которой особенности исходной функции сглажены, хотя функция остаётся близкой к исходной функции. Операторы известны также как сглаживающие операторы Фридрихса...

Подробнее: Сглаживающий оператор
О дискретном эквиваленте преобразования Лапласа см. Z-преобразование.В математике дискретный оператор Лапласа — аналог непрерывного оператора Лапласа, определяемого как отношения на графе или дискретной сетке. В случае конечномерного графа (имеющего конечное число вершин и рёбер) дискретный оператор Лапласа имеет более общее название: матрица Лапласа.

Подробнее: Дискретный оператор Лапласа
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Многочлен Александера — это инвариант узла, который сопоставляет многочлен с целыми коэффициентами узлу любого типа. Джеймс Александер обнаружил его, первый многочлен узла, в 1923. В 1969 Джон Конвей представил версию этого многочлена, ныне носящую название многочлен Александера — Конвея. Этот многочлен можно вычислить с помощью скейн-соотношения, хотя важность этого не была осознана до открытия полинома Джонса в 1984. Вскоре после доработки Конвеем многочлена Александера стало понятно, что похожее...
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Произведением Мояля — самый известный пример звёздочного произведения в фазовом пространстве.
Едини́чный ко́рень (англ. unit root) — понятие, используемое в анализе временных рядов (эконометрика), характеризующее свойство некоторых нестационарных временных рядов. Название связано с тем, что так называемое характеристическое уравнение (или характеристический полином) авторегрессионной модели временного ряда имеет корни, равные по модулю единице. Наличие единичных корней в авторегрегрессионной модели временного ряда эквивалентно понятию интегрированности временного ряда.
Функтор обратного образа — это ковариантная конструкция пучков. Функтор прямого образа является первичной операцией на пучках, с простым определением. Обратный образ обладает более тонкими свойствами.
Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я