Алгебраическое многообразие

Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.

Определение алгебраического многообразия может слегка различаться у разных авторов: некоторые авторы включают в определение свойство неприводимости (это значит, что многообразие не может быть объединением меньших многообразий, см. ниже), тогда как некоторые различают неприводимые и «общие» многообразия. В данной статье мы будем придерживаться первого соглашения, и будем называть множества решений систем уравнений, не являющиеся неприводимыми, алгебраическими множествами.

Понятие алгебраического многообразия имеет некоторое сходство с понятием гладкого многообразия. Различие состоит в том, что алгебраические многообразия, в отличие от гладких многообразий, могут иметь особые точки. Окрестность неособой точки действительного алгебраического многообразия изоморфна гладкому многообразию.

Доказанная около 1800 года основная теорема алгебры установила связь между алгеброй и геометрией, показав, что приведённый многочлен от одной переменной (алгебраический объект) однозначно определяется своими комплексными корнями, то есть конечным множеством точек на комплексной плоскости (геометрический объект). Теорема Гильберта о нулях, обобщая этот результат, установила фундаментальное соответствие между идеалами кольца многочленов и алгебраическими многообразиями. Используя теорему Гильберта о нулях и связанные с ней результаты, математики установили соответствие между вопросами об алгебраических многообразиях и вопросами теории колец; использование подобных соответствий является отличительной чертой алгебраической геометрии.

Источник: Википедия

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я