Связанные понятия
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Модели дискретного выбора — экономические (эконометрические) модели, позволяющие описывать, объяснять и прогнозировать выбор между, двумя или более альтернативами (то есть когда множество альтернатив не более чем счетно). Модели дискретного выбора позволяют на основе некоторых характеристик (атрибутов) экономического субъекта или ситуации оценить вероятность выбора той или иной альтернативы.
Подробнее: Дискретный выбор
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Статистический параметр или параметр совокупности — это величина, которая индексирует семейство распределений вероятностей. Его можно расценивать как числовую характеристику совокупности или статистической модели.
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Минимизация эмпирического риска (МЭР, англ. Empirical risk minimization, ERM) — это принцип статистической теории обучения, который определяет семейство алгоритмов обучения и который задаёт теоретические границы производительности.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Коэффицие́нт асимметри́и в теории вероятностей — величина, характеризующая асимметрию распределения данной случайной величины.
Сглаживающий сплайн (англ. smoothing spline) это метод сглаживания (аппроксимации кривой набора зашумлённых исходных данных) с использованием сплайн-функций.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.
Подробнее: Прямая и обратная предельная теорема
Случайный элемент — обобщение понятия случайной величины. Термин был введён, по-видимому, М.Фреше (1948), отмечавшим, что «развитие теории вероятностей и расширение области её приложений привели к необходимости перейти от схем, где (случайные) исходы опыта могут быть описаны числом или конечным набором чисел, к схемам, где исходы опыта представляют собой, например, векторы, функции, процессы, поля, ряды, преобразования, а также множества или наборы множеств».
Закон сравнительных суждений - психофизический закон, определяющий отношение между двумя объектами в психическом пространстве человека. Сформулирован Л. Л. Терстоуном.
Анализ полных наблюдений (англ. listwise/casewise deletion, реже англ. complete-case analysis) — статистический метод обработки пропущенных данных, основанный на удалении всех наблюдений с неполными признаковыми описаниями. Считается самым простым способом разрешения проблемы пропущенных данных.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
В математической статистике
критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению (для одной выборки) или о равенстве нулю медианы разности (для двух связанных выборок). Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.
Элиминация кванторов — получение по заданной логической формуле эквивалентной ей, не содержащей кванторов. Теории, допускающие элиминацию кванторов для любой формулы, представляют особый интерес, поскольку наличие алгоритма элиминации позволяет получить ряд содержательных результатов об этой теории.
Задача выполнимости формул в теориях (англ. satisfiability modulo theories, SMT) — это задача разрешимости для логических формул с учётом лежащих в их основе теорий. Примерами таких теорий для SMT-формул являются: теории целых и вещественных чисел, теории списков, массивов, битовых векторов и т. п.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...
Квазиньютоновские методы — методы оптимизации, основанные на накоплении информации о кривизне целевой функции по наблюдениям за изменением градиента, чем принципиально отличаются от ньютоновских методов. Класс квазиньютоновских методов исключает явное формирование матрицы Гессе, заменяя её некоторым приближением.
Обратная вероятность , по-разному интерпретированная, не была доминирующим подходом к статистике вплоть до развития частотного подхода в начале 20 века Р.А.Фишер, Ежи Нейман и Эгон Пирсон. После разработки частотного подхода, термины частотная и Байесовская развивались при противопоставлении этих подходов, и получили широкое распространение в 1950-х годах.
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Тест Хаусмана , называемый также тестом Ву-Хаусмана или Дарбина-Ву-Хаусмана — применяемый в эконометрике тест для сравнения моделей, оцененных разными методами, один из которых позволяет получить состоятельные оценки и при нулевой и при альтернативной гипотезе, а другой — только при нулевой гипотезе.
В комбинаторной математике под числом встреч понимается число перестановок множества {1, ..., n} с заданным числом неподвижных элементов.
Подробнее: Число встреч (комбинаторика)
Граф зависи́мостей — ориентированный граф, отображающий соотношение множества элементов некоторой совокупности в соответствии с выбранным транзитивным отношением над ней.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Ядро м (англ. kernel) в статистике и эконометрике называют окно (весовую функцию). Байесовская, непараметрическая статистика и теория распознавания образов трактуют термин по-разному.
Многомерное шкалирование — метод анализа и визуализации данных с помощью расположения точек, соответствующих изучаемым (шкалируемым) объектам, в пространстве меньшей размерности чем пространство признаков объектов. Точки размещаются так, чтобы попарные расстояния между ними в новом пространстве как можно меньше отличались от эмпирически измеренных расстояний в пространстве признаков изучаемых объектов. Если элементы матрицы расстояний получены по интервальным шкалам, метод многомерного шкалирования...
Мартинга́л в теории случайных процессов — такой случайный процесс, что наилучшим (в смысле среднеквадратичного) предсказанием поведения процесса в будущем является его настоящее состояние.
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Теория вычислительного обучения (англ. computational learning theory, или просто теория обучения), это подобласть теории искусственного интеллекта, посвящённая разработке и анализу алгоритмов обучения машин.
Зада́ча Гурса ́ — это разновидность краевой задачи для гиперболических уравнений и систем 2-го порядка с двумя независимыми переменными по данным на двух выходящих из одной точки характеристических кривых.
Индекс Тейла представляет собой показатель измерения социального неравенства, предложенный в 1967 году нидерландским экономистом Анри Тейлом. Индекс Тейла основан на предложенном Шенноном понятии информационной энтропии. В отличие от коэффициента Джини индекс Тейла разложим, то есть, если популяция разбита на группы, то индекс Тейла всей популяции можно записать в виде взвешенной суммы индексов Тейла каждой из групп и показателя социального неравенства между группами. Разложимость индекса Тейла позволяет...
Лине́йная интерполя́ция — интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка . В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.
Метод спектрального элемента (МСЭ) для решения дифференциальных уравнений в частных производных — это метод конечных элементов, в котором используются кусочные многочлены высокой степени в качестве базисных функций. Метод спектрального элемента предложил в статье 1984 года Т. Патера.
Алгоритм исчисления порядка (index-calculus algorithm) — вероятностный алгоритм вычисления дискретного логарифма в кольце вычетов по модулю простого числа. На сложности нахождения дискретного логарифма основано множество алгоритмов связанных с криптографией. Так как для решения данной задачи с использованием больших чисел требуется большое количество ресурсов, предоставить которые не может ни один современный компьютер. Примером такого алгоритма является ГОСТ Р 34.10-2012.
Экономика обмена — упрощенная формализованная микроэкономическая модель общего равновесия в экономике без производства. Экономика обмена характеризуется множеством потребителей, множествами их допустимых потребительских наборов, их предпочтениями и начальными запасами экономических благ. Экономики с производством благ рассматривается в модели Эрроу-Дебрё.
Метод характеристик — метод решения дифференциальных уравнений в частных производных. Обычно применяется к решению уравнений в частных производных первого порядка, но он может быть применен и к решению гиперболических уравнений более высокого порядка.
Пото́к одноро́дных собы́тий — случайная последовательность событий, упорядоченных по неубыванию моментов времени. Если данный момент времени совпадает с одним или несколькими событиями данной последовательности, то говорят, что в этот момент произошло соответствующее число событий потока.
По́лная систе́ма коммути́рующих наблюда́емых (ПСКН) — множество перестановочных (коммутирующих) самосопряжённых операторов, описывающих квантовые наблюдаемые и определяющих обобщённый базис пространства чистых состояний квантовой системы. Это понятие впервые было предложено Дираком и является одним из основных в квантовой механике. Обобщенные собственные значения операторов ПСКН называются квантовыми числами.
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Подробнее: Эллиптическое уравнение
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
Теорема Рэлея — утверждение в гидродинамике, согласно которому для плоскопараллельного течения для развития неустойчивости необходимым условием является наличие точки перегиба профиля течения. Теорема получена Рэлеем в приближении идеальной жидкости.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.