Модель вычислений

  • Иные значения см. разделе в Компьютерное моделирование.Теория вычислимости и теория сложности вычислений трактует модель вычисления (англ. model of computation) не только как определение множества допустимых операций, использованных для вычисления, но также и относительных издержек их применения. Охарактеризовать необходимые вычислительные ресурсы — время выполнения, объём памяти, а также ограничения алгоритмов или компьютера — можно только в том случае, если выбрана определённая модель вычислений.

    В модельно-ориентированной инженерии модель вычислений и её выбор дают ответ на вопрос, как ведёт себя система в целом, если известно поведение её отдельных частей.

    При асимптотической оценке сложности вычислений модель вычислений определяется через допустимые примитивные операции с известной ценой.

    Известен целый ряд моделей вычислений, зависящих от набора применяемых операций и их вычислительной сложности. Они распадаются на следующие большие категории: абстрактные машины (абстрактные вычислители), используемые для доказательства вычислимости и получения верхней границы вычислительной сложности алгоритма, и модели принятия решений, используемые для получения нижней границы сложности вычислений для алгоритмических задач.

Источник: Википедия

Связанные понятия

Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Задача выполнимости формул в теориях (англ. satisfiability modulo theories, SMT) — это задача разрешимости для логических формул с учётом лежащих в их основе теорий. Примерами таких теорий для SMT-формул являются: теории целых и вещественных чисел, теории списков, массивов, битовых векторов и т. п.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.

Упоминания в литературе

Потеря актуальности рядом положении «Оранжевой книги» вызвана прежде всего интенсивным развитием компьютерных технологий и переходом с мэйнфреймов (типа вычислительных комплексов IBM-360, 370; советский аналог – машины серии ЕС) к рабочим станциям, высокопроизводительным персональным компьютерам и сетевой модели вычислений. Именно для того, чтобы исключить возникшую в связи с изменением аппаратной платформы некорректность некоторых положений «Оранжевой книги», адаптировать их к современным условиям и сделать адекватными нуждам разработчиков и пользователей программного обеспечения, и была проделана огромная работа по интерпретации и развитию положений этого стандарта. В результате возник целый ряд сопутствующих «Оранжевой книге» документов, многие их которых стали ее неотъемлемой частью. К наиболее часто упоминаемым относятся:

Связанные понятия (продолжение)

Алгоритм исчисления порядка (index-calculus algorithm) — вероятностный алгоритм вычисления дискретного логарифма в кольце вычетов по модулю простого числа. На сложности нахождения дискретного логарифма основано множество алгоритмов связанных с криптографией. Так как для решения данной задачи с использованием больших чисел требуется большое количество ресурсов, предоставить которые не может ни один современный компьютер. Примером такого алгоритма является ГОСТ Р 34.10-2012.
В обучении машин, оптимизация гиперпараметров — это задача выбора набора оптимальных гиперпараметров для обучающего алгоритма.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Вероятностно приблизительно корректное обучение (ВПК обучение, англ. Probably Approximately Correct learning, (PAC learning) в теории вычислительного обучения — это схема математического анализа машинного обучения. Схему предложил в 1984 Лесли Вэлиант.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...

Подробнее: Ядерный метод
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS) (англ. Broyden — Fletcher — Goldfarb — Shanno algorithm) — итерационный метод численной оптимизации, предназначенный для нахождения локального максимума/минимума нелинейного функционала без ограничений.
Быстрые алгоритмы — это область вычислительной математики, которая изучает алгоритмы вычисления заданной функции с заданной точностью с использованием как можно меньшего числа битовых операций.
В математической статистике семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
Циклический избыточный код (англ. Cyclic redundancy check, CRC) — алгоритм нахождения контрольной суммы, предназначенный для проверки целостности данных. CRC является практическим приложением помехоустойчивого кодирования, основанным на определённых математических свойствах циклического кода.
Квадрати́чная зада́ча о назначе́ниях (КЗН, англ. Quadratic assignment problem, QAP) — одна из фундаментальных задач комбинаторной оптимизации в области оптимизации или исследования операций, принадлежащая категории задач размещения объектов.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Интервальная арифметика — математическая структура, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Эту область математики называют также интервальным анализом или интервальными вычислениями. Данная математическая модель удобна для исследования различных прикладных объектов...
Дробно-линейное программирование (ДЛП) — математическая дисциплина, посвящённая теории и методам решения задач об экстремумах отношений линейных функций на множествах n-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
Схема функциональной целостности (СФЦ) — это логически универсальное графическое средство структурного представления исследуемых свойств системных объектов. Описание аппарата схем функциональной целостности было впервые опубликовано Можаевым А. С. в 1982 году. По построению аппарат СФЦ реализует все возможности алгебры логики в функциональном базисе «И», «ИЛИ» и «НЕ». СФЦ позволяют корректно представлять как все традиционные виды структурных схем (блок-схемы, деревья отказов, деревья событий, графы...
Макроконвейер — распределенная многопроцессорная система, обладающая программной и аппаратной поддержкой организации вычислений по макроконвейерному принципу. Этот принцип был предложен в 1978 году советским математиком В. М. Глушковым. Его суть состоит в том, что при распределении вычислительных заданий между процессорами каждому процессору на очередном шаге вычислений дается такое задание, которое может загрузить его работой на определенное время, без взаимодействия с другими процессорами. Последовательное...
Сверхтьюринговыми вычислениями (или гипервычислениями (англ. hypercomputation)) называются такие вычисления, которые не могут быть проделаны на машине Тьюринга. Они включают в себя разнообразные гипотетические методы, основанные на суперрекурсивных алгоритмах, а также некоторые другие типы вычислений — например, интерактивные вычисления. Термин гипервычисления (англ. hypercomputation) был впервые введён Джеком Коуплендом и Дианой Праудфут. Возможность физической реализации таких вычислений активно...

Подробнее: Сверхтьюринговые вычисления
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.

Подробнее: Аппроксимационный алгоритм
Функция Розенброка (англ. Rosenbrock function, Rosenbrock's valley, Rosenbrock's banana function) — невыпуклая функция, используемая для оценки производительности алгоритмов оптимизации, предложенная Ховардом Розенброком в 1960 году. Считается, что поиск глобального минимума для данной функции является нетривиальной задачей.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Формальные методы занимаются приложением довольно широкого класса фундаментальных техник теоретической информатики: разные исчисления логики, формальных языков, теории автоматов, формальной семантики, систем типов и алгебраических типов данных.
Полный перебор (или метод «грубой силы», англ. brute force) — метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
Информи́рованный по́иск (также эвристический поиск, англ. informed search, heuristic search) — стратегия поиска решений в пространстве состояний, в которой используются знания, относящиеся к конкретной задаче. Информированные методы обычно обеспечивают более эффективный поиск по сравнению с неинформированными методами.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации...
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Структурное прогнозирование или структурное обучение является собирательным термином для техник обучения машин с учителем, которые вовлекают предвидение структурных объектов, а не скалярных дискретных или вещественных значений.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений. Разрыв между сложностью прямого и обратного преобразований определяет криптографическую эффективность односторонней функции. Неинъективность функции не является достаточным условием для того, чтобы называть её односторонней. Односторонние функции могут называться...
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.

Подробнее: Спектральная кластеризация
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности.
Линейный классификатор — способ решения задач классификации, когда решение принимается на основании линейного оператора над входными данными. Класс задач, которые можно решать с помощью линейных классификаторов, обладают, соответственно, свойством линейной сепарабельности.
Последовательное квадратичное программирование (англ. Sequential quadratic programming (SQP)) — один из наиболее распространённых и эффективных оптимизационных алгоритмов общего назначения, основной идеей которого является последовательное решение задач квадратичного программирования, аппроксимирующих данную задачу оптимизации. Для оптимизационных задач без ограничений алгоритм SQP преобразуется в метод Ньютона поиска точки, в которой градиент целевой функции обращается в ноль. Для решения исходной...
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Метод группового учёта аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Метод внутренней точки — это метод позволяющий решать задачи выпуклой оптимизации с условиями, заданными в виде неравенств, сводя исходную задачу к задаче выпуклой оптимизации.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Вариационный метод — метод решения математических задач с помощью минимизации определённого функционала, используя пробную функцию, которая зависит от небольшого количества параметров.
Винеровская теория нелинейных систем — подход к решению задач анализа и синтеза нелинейных систем с постоянными параметрами, при котором в качестве математической модели нелинейной системы рассматривается функционал, который ставит в соответствие каждой функции (входному сигналу системы за рассматриваемое время) число (мгновенный выходной сигнал системы).
Вероятностный алгоритм — алгоритм, предусматривающий обращение на определённых этапах своей работы к генератору случайных чисел с целью получения экономии во времени работы за счёт замены абсолютной достоверности результата достоверностью с некоторой вероятностью.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я