Ковариантный метод

  • Ковариа́нтный метод — подход в теоретической физике, разработанный Ф. И. Фёдоровым на основе линейной алгебры и прямого тензорного исчисления. Получил распространение в приложении к описанию оптических явлений и, частично, в физике элементарных частиц.

Источник: Википедия

Связанные понятия

В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Диакоптика, или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
В этой статье рассматривается математический базис общей теории относительности.

Подробнее: Математическая формулировка общей теории относительности
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем (открытие волн материи), В. Гейзенбергом (создание матричной механики, открытие принципа неопределённости), Э. Шрёдингером (уравнение Шрёдингера), Н. Бором (формулировка принципа дополнительности). Завершил создание математических основ квантовой механики...
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917-го года.
Фазовое пространство в математике и физике — пространство, каждая точка которого соответствует одному и только одному состоянию из множества всех возможных состояний системы. Точка пространства, соответствующая состоянию системы называется «изображающей» или «представляющей» для него. Таким образом, изменению состояний системы, — т.е. её динамике — можно сопоставить движение изображающей точки; траекторию этой точки называют фазовой траекторией (следует отметить, что она не тождествлена действительной...
Ма́тричная меха́ника — математический формализм квантовой механики, разработанный Вернером Гейзенбергом, Максом Борном и Паскуалем Иорданом в 1925 году.
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Уравнение синус-Гордона — это нелинейное гиперболическое уравнение в частных производных в 1 + 1 измерениях, включающее в себя оператор Даламбера и синус неизвестной функции. Изначально оно было рассмотрено в XIX веке в связи с изучением поверхностей постоянной отрицательной кривизны. Это уравнение привлекло много внимания в 1970-х из-за наличия у него солитонных решений.
Блочный Гамильтониан — гамильтониан, описывающий критическое поведение магнетика вблизи точки фазового перехода второго рода.
Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными...
Обратная решётка — точечная трёхмерная решётка в абстрактном обратном пространстве, где расстояния имеют размерность обратной длины. Понятие обратной решётки удобно для описания дифракции рентгеновских лучей, нейтронов и электронов на кристалле. Обратная решётка (обратное пространство, импульсное пространство) является Фурье-образом прямой кристаллической решётки (прямого пространства).
Критическая динамика — раздел теории критического поведения и статистической физики, описывающий динамические свойства физической системы в или вблизи критической точки. Является продолжением и обобщением критической статики, позволяя описывать величины и характеристики системы, которые нельзя выразить лишь через одновременны́е равновесные функции распределения. Такими величинами являются, например, коэффициенты переноса, скорости релаксации, разновременны́е корреляционные функции, функции отклика...
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
Уравнение ренормгруппы (уравнение Каллана — Симанчика) — дифференциальное уравнение для корреляционных функций (пропагаторов), показывающее их независимость от масштаба рассмотрения. Оно имеет место, например, при рассмотрении динамики системы вблизи критической точки.
Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Теория потенциала — раздел математики и математической физики, посвящённый изучению свойств дифференциальных уравнений в частных производных в областях с достаточно гладкой границей посредством введения специальных видов интегралов, зависящих от определённых параметров, называемых потенциалами.
Теория случайных матриц — раздел математики на стыке математической физики и теории вероятности, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило, задаётся закон распределения элементов. При этом изучается статистика собственных значений случайных матриц, а иногда также статистика их собственных векторов.
Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.

Подробнее: Ренормализационная группа
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.

Подробнее: Когерентный пучок
Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.

Подробнее: Снижение размерности
Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.
Соотноше́ния Кра́мерса — Кро́нига — интегральная связь между действительной и мнимой частями любой комплексной функции, аналитичной в верхней полуплоскости. Часто используются в физике для описания связи действительной и мнимой частей функции отклика физической системы, поскольку аналитичность функции отклика подразумевает, что система удовлетворяет принципу причинности, и наоборот . В частности, соотношения Крамерса — Кронига выражают связь между действительной и мнимой частями диэлектрической проницаемости...
Тео́рия упру́гости — раздел механики сплошных сред, изучающий деформации упругих твёрдых тел, их поведение при статических и динамических нагрузках.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Магнитоста́тика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае. Под случаем магнитостатики или приближением магнитостатики понимают выполнение этих условий (постоянства токов и полей — или достаточно медленное их изменение со временем), чтобы можно было пользоваться методами магнитостатики в качестве практически точных или хотя бы приближенных. Магнитостатика...
Формулировка через интеграл по траекториям квантовой механики — это описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое определение одиночной, уникальной траектории системы полной суммой (функциональным интегралом) по бесконечному множеству всевозможных траекторий для расчёта квантовой амплитуды. Методологически формулировка через интеграл по траекториям близка к принципу Гюйгенса — Френеля из классической теории волн.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...
Метод изображений (метод зеркальных отображений) — один из методов математической физики, применяемый для решения краевых задач для уравнения Гельмгольца, уравнения Пуассона, волнового уравнения и некоторых других.
Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил её (см. ниже). Уравнение, представляющее собой содержание теоремы в этом обобщённом виде, входит в число уравнений Максвелла. (Для случая постоянных электрических полей — то есть в принципе в магнитостатике — верна теорема в первоначальном виде, сформулированном...
Кратномасштабный анализ (КМА) является инструментом построения базисов вейвлетов. Он был разработан в 1988/89 гг. Малла и И. Мейром. Идея кратномасштабного анализа заключается в том, что разложение сигнала производится по ортогональному базису, образованному сдвигами и кратномасштабными копиями вейвлетной функции. Свертка сигнала с вейвлетами позволяет выделить характерные особенности сигнала в области локализации этих вейвлетов.
Скаля́р (от лат. scalaris — ступенчатый) — величина, полностью определяемая в любой координатной системе одним числом или функцией, которое не меняется при изменении пространственной системы координат. В математике под «числами» могут подразумеваться элементы произвольного поля, тогда как в физике имеются в виду действительные или комплексные числа. О функции, принимающей скалярные значения, говорят как о скалярной функции.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Лагранжева механика является переформулировкой классической механики, введённой Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля.
Одноэлектронное приближение — приближенный метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами.
Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась лоренц-ковариантность.
Теорема Баргмана — утверждение о свойстве фазовых преобразований в нерелятивистской квантовой механике, запрещающем описывать суперпозицию волновых функций, соответствующих частицам с различными массами. Впервые была доказана Валентином Баргманом в 1954 году.
По́лная систе́ма коммути́рующих наблюда́емых (ПСКН) — множество перестановочных (коммутирующих) самосопряжённых операторов, описывающих квантовые наблюдаемые и определяющих обобщённый базис пространства чистых состояний квантовой системы. Это понятие впервые было предложено Дираком и является одним из основных в квантовой механике. Обобщенные собственные значения операторов ПСКН называются квантовыми числами.
Квантовая статистическая механика – статистическая механика, применяемая к квантовомеханическим системам. Для перехода от классической статистической механики к квантовой предположение классической статистической механики о том, что все допустимые области фазового пространства можно считать равновероятными, заменяется предположением, что все допустимые состояния имеют равные вероятности. Математически это означает, что все интегралы по фазовому пространству заменяются суммами по всем собственным...
Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
О́бщая тео́рия относи́тельности в многоме́рном простра́нстве — это обобщение общей теории относительности на пространство-время с размерностью больше или меньше 4. Эта теория даёт основу для так называемой геометризации взаимодействий — одного из двух путей (наряду с калибровочным подходом) к построению единой теории поля. Она состоит из различных физических теорий, которые пытаются обобщить теорию относительности Эйнштейна на более высоких размерностях. Такая попытка обобщения находится под большим...
Все физические явления могут быть описаны в разных пространствах: координатном, импульсном, фазовом и др. Описания математически эквивалентны, однако различаются сложностью и интуитивностью описания. В большинстве случаев, координатное пространство является интуитивно понятным и наиболее лёгким для понимания процесса, в нём протекающего, однако, в физике твёрдого тела в общем случае удобнее использовать импульсное описание.

Подробнее: Координатное пространство
Калибровочная теория гравитации — это подход к объединению гравитации с другими фундаментальными взаимодействиями, успешно описываемыми в рамках калибровочной теории.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я