Связанные понятия
Информационный критерий Акаике (AIC) — критерий, применяющийся исключительно для выбора из нескольких статистических моделей. Разработан в 1971 как «an information criterion» («(некий) информационный критерий») Хироцугу Акаике и предложен им в статье 1974 года.
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру.
Состоя́тельная оце́нка в математической статистике — это точечная оценка, сходящаяся по вероятности к оцениваемому параметру.
Апостерио́рная вероя́тность — условная вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.
Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Генеральная совокупность (от лат. generis — общий, родовой) — совокупность всех объектов (единиц), относительно которых предполагается делать выводы при изучении конкретной задачи.
Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Тест отноше́ния правдоподо́бия (англ. likelihood ratio test, LR) — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом множителей Лагранжа и тестом Вальда.
То́чечная оце́нка в математической статистике — это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Выброс (англ. outlier), промах — в статистике результат измерения, выделяющийся из общей выборки.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Авторегрессионная условная гетероскедастичность (англ. ARCH; AutoRegressive Conditional Heteroscedasticity) — применяемая в эконометрике модель для анализа временных рядов (в первую очередь финансовых), у которых условная (по прошлым значениям ряда) дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время...
Отбор признаков , известный также как отбор переменных, отбор атрибутов или отбор поднабора переменных, это процесс отбора подмножества значимых признаков (переменных зависимых и независимых) для использования в построении модели. Техники отбора признаков используются по четырём причинам...
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Переобучение (переподгонка, пере- в значении «слишком», англ. overfitting) в машинном обучении и статистике — явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Ординалистская (порядковая) теория полезности основывается на том, что предпочтения индивидуума относительно предлагаемых к выбору альтернатив не могут измеряться количественно, а только сравниваться, то есть одна альтернатива хуже или лучше другой. Альтернативой данной теории является кардиналистская (количественная) теория полезности.
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В отличие от t-критерия, позволяет сравнивать средние значения трёх и более групп. Разработан Р. Фишером для анализа результатов экспериментальных исследований. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of VAriance).
Цензурированная регрессия (англ. Censored regression) — регрессия, с зависимой переменной, наблюдаемой с ограничением (цензурированием) возможных значений. При этом модель может быть цензурирована только с одной стороны (снизу или сверху) или с обеих сторон. Цензурированная регрессия отличается от усеченной регрессии (англ. truncated regression), тем что значения факторов, в отличие от зависимой переменной, наблюдаются без ограничений.
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Нулевая гипотеза — принимаемое по умолчанию предположение о том, что не существует связи между двумя наблюдаемыми событиями, феноменами. Так, нулевая гипотеза считается верной до того момента, пока нельзя доказать обратное. Опровержение нулевой гипотезы, то есть приход к заключению о том, что связь между двумя событиями, феноменами существует, — главная задача современной науки. Статистика как наука даёт чёткие условия, при наступлении которых нулевая гипотеза может быть отвергнута.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Временно́й ряд (или ряд динамики) — собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде для каждого отсчёта должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных, так...
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Т-критерий Вилкоксона — (также используются названия Т-критерий Уилкоксона, критерий Вилкоксона, критерий знаковых рангов Уилкоксона, критерий суммы рангов Уилкоксона) непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных или независимых измерений по уровню какого-либо количественного признака, измеренного в непрерывной или в порядковой шкале.. Впервые предложен Фрэнком Уилкоксоном. Другие названия — W-критерий Вилкоксона, критерий знаковых...
Подробнее: Критерий Уилкоксона
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Для определения средних или наиболее типичных значений совокупности используются показатели центра распределения. Основные из них — математическое ожидание, среднее арифметическое, среднее геометрическое, среднее гармоническое, среднее степенное, взвешенные средние, центр сгиба, медиана, мода.
Подробнее: Показатели центра распределения
Метод инструментальных переменных (ИП, IV — Instrumental Variables) — метод оценки параметров регрессионных моделей, основанный на использовании дополнительных, не участвующих в модели, так называемых инструментальных переменных. Метод применяется в случае, когда факторы регрессионной модели не удовлетворяют условию экзогенности, то есть являются зависимыми со случайными ошибками. В этом случае, оценки метода наименьших квадратов являются смещенными и несостоятельными.
Ядерная оценка плотности (ЯОП, англ. Kernel Density Estimation, KDE) — это непараметрический способ оценки плотности случайной величины. Ядерная оценка плотности является задачей сглаживания данных, когда делается заключение о совокупности, основываясь на конечных выборках данных. В некоторых областях, таких как обработка сигналов и математическая экономика, метод называется также методом окна Парзена-Розенблатта. Как считается, Эммануэль Парзен и Мюррей Розенблатт независимо создали метод в существующем...
Функция потерь — функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения между истинным значением оцениваемого параметра и оценкой параметра.